sage: H = DirichletGroup(33600)
sage: chi = H[1]
pari: [g,chi] = znchar(Mod(1,33600))
Basic properties
Modulus: | \(33600\) | |
Conductor: | \(1\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(1\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | yes | |
Primitive: | no, induced from \(\chi_{1}(0,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
|
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q\) |
Values on generators
\((28351,10501,11201,5377,28801)\) → \((1,1,1,1,1)\)
First values
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |