Properties

Label 2-248430-1.1-c1-0-13
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 9-s + 10-s + 2·11-s − 12-s + 15-s + 16-s − 18-s − 8·19-s − 20-s − 2·22-s − 8·23-s + 24-s + 25-s − 27-s + 8·29-s − 30-s − 2·31-s − 32-s − 2·33-s + 36-s − 8·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.603·11-s − 0.288·12-s + 0.258·15-s + 1/4·16-s − 0.235·18-s − 1.83·19-s − 0.223·20-s − 0.426·22-s − 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s + 1.48·29-s − 0.182·30-s − 0.359·31-s − 0.176·32-s − 0.348·33-s + 1/6·36-s − 1.31·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6430090601\)
\(L(\frac12)\) \(\approx\) \(0.6430090601\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.68340094660966, −12.35971548591294, −11.80340084467184, −11.50903157091548, −10.94397974258146, −10.52185380607875, −10.14283219064855, −9.753604785994265, −8.926315139956543, −8.749085800092480, −8.232074426416181, −7.695495841681035, −7.242296900759234, −6.643224751631198, −6.254450045670640, −5.936829441702688, −5.237124219815818, −4.397501960819662, −4.273312390698559, −3.634918921789434, −2.903825007072042, −2.172752466203367, −1.769106398459862, −0.9638648390678255, −0.2986839396805136, 0.2986839396805136, 0.9638648390678255, 1.769106398459862, 2.172752466203367, 2.903825007072042, 3.634918921789434, 4.273312390698559, 4.397501960819662, 5.237124219815818, 5.936829441702688, 6.254450045670640, 6.643224751631198, 7.242296900759234, 7.695495841681035, 8.232074426416181, 8.749085800092480, 8.926315139956543, 9.753604785994265, 10.14283219064855, 10.52185380607875, 10.94397974258146, 11.50903157091548, 11.80340084467184, 12.35971548591294, 12.68340094660966

Graph of the $Z$-function along the critical line