Properties

Label 2-2142-1.1-c1-0-18
Degree $2$
Conductor $2142$
Sign $1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s − 7-s + 8-s + 2·10-s + 2·11-s − 14-s + 16-s + 17-s − 2·19-s + 2·20-s + 2·22-s + 8·23-s − 25-s − 28-s + 8·31-s + 32-s + 34-s − 2·35-s − 4·37-s − 2·38-s + 2·40-s + 6·41-s + 4·43-s + 2·44-s + 8·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.377·7-s + 0.353·8-s + 0.632·10-s + 0.603·11-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.458·19-s + 0.447·20-s + 0.426·22-s + 1.66·23-s − 1/5·25-s − 0.188·28-s + 1.43·31-s + 0.176·32-s + 0.171·34-s − 0.338·35-s − 0.657·37-s − 0.324·38-s + 0.316·40-s + 0.937·41-s + 0.609·43-s + 0.301·44-s + 1.17·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.409269234\)
\(L(\frac12)\) \(\approx\) \(3.409269234\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.193438041525969459140423565967, −8.359570697179676719728215901866, −7.25240739827983854207639165382, −6.55628051685253958930913791783, −5.94819319792275289673190098158, −5.12300888609309699278993633706, −4.25931768077630798940248043382, −3.23306469703830825571019602514, −2.37230827909562924229408640307, −1.19502502056681126609413306691, 1.19502502056681126609413306691, 2.37230827909562924229408640307, 3.23306469703830825571019602514, 4.25931768077630798940248043382, 5.12300888609309699278993633706, 5.94819319792275289673190098158, 6.55628051685253958930913791783, 7.25240739827983854207639165382, 8.359570697179676719728215901866, 9.193438041525969459140423565967

Graph of the $Z$-function along the critical line