Properties

Label 2-200376-1.1-c1-0-4
Degree $2$
Conductor $200376$
Sign $1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s + 4·13-s + 6·17-s + 23-s − 25-s + 8·31-s + 8·35-s − 2·37-s − 8·47-s + 9·49-s − 6·53-s + 4·59-s − 14·61-s − 8·65-s − 4·67-s − 8·71-s + 4·73-s + 4·83-s − 12·85-s − 2·89-s − 16·91-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s + 1.10·13-s + 1.45·17-s + 0.208·23-s − 1/5·25-s + 1.43·31-s + 1.35·35-s − 0.328·37-s − 1.16·47-s + 9/7·49-s − 0.824·53-s + 0.520·59-s − 1.79·61-s − 0.992·65-s − 0.488·67-s − 0.949·71-s + 0.468·73-s + 0.439·83-s − 1.30·85-s − 0.211·89-s − 1.67·91-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.208238327\)
\(L(\frac12)\) \(\approx\) \(1.208238327\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13416336088959, −12.53491893079004, −12.04419190738257, −11.85370677892953, −11.24159757638160, −10.62105874242569, −10.29116724652286, −9.709010508020548, −9.399382062246328, −8.775866915626847, −8.221589511528453, −7.876489866885307, −7.346023749244713, −6.765881039743419, −6.216215749291507, −6.017490990467293, −5.300125591041193, −4.628026334591121, −4.047505061027653, −3.484757084492611, −3.201771071706031, −2.765803605937540, −1.696724902257706, −1.045381550422634, −0.3580224646318706, 0.3580224646318706, 1.045381550422634, 1.696724902257706, 2.765803605937540, 3.201771071706031, 3.484757084492611, 4.047505061027653, 4.628026334591121, 5.300125591041193, 6.017490990467293, 6.216215749291507, 6.765881039743419, 7.346023749244713, 7.876489866885307, 8.221589511528453, 8.775866915626847, 9.399382062246328, 9.709010508020548, 10.29116724652286, 10.62105874242569, 11.24159757638160, 11.85370677892953, 12.04419190738257, 12.53491893079004, 13.13416336088959

Graph of the $Z$-function along the critical line