Properties

Label 2-200376-1.1-c1-0-39
Degree $2$
Conductor $200376$
Sign $-1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 2·13-s + 2·17-s + 6·19-s − 23-s − 25-s + 4·29-s − 8·31-s − 4·35-s − 2·37-s − 12·41-s − 6·43-s − 8·47-s − 3·49-s − 2·53-s + 4·59-s − 4·61-s − 4·65-s + 12·67-s + 12·71-s − 10·73-s + 10·79-s + 4·83-s + 4·85-s − 6·89-s + 4·91-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 0.554·13-s + 0.485·17-s + 1.37·19-s − 0.208·23-s − 1/5·25-s + 0.742·29-s − 1.43·31-s − 0.676·35-s − 0.328·37-s − 1.87·41-s − 0.914·43-s − 1.16·47-s − 3/7·49-s − 0.274·53-s + 0.520·59-s − 0.512·61-s − 0.496·65-s + 1.46·67-s + 1.42·71-s − 1.17·73-s + 1.12·79-s + 0.439·83-s + 0.433·85-s − 0.635·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.35940216483618, −12.80491891025848, −12.45241172789937, −11.89558734665692, −11.51777923046308, −10.93971344665488, −10.22951695418102, −9.935164359145431, −9.627710532970778, −9.285244293415359, −8.520769226903582, −8.133291634137818, −7.483038867327786, −6.972897503217870, −6.587699053697936, −6.045037260253290, −5.445812667577695, −5.144206264806106, −4.637652344116065, −3.570698884272451, −3.423380642400947, −2.846096482345793, −1.960402869155270, −1.715524137787534, −0.7890028975896674, 0, 0.7890028975896674, 1.715524137787534, 1.960402869155270, 2.846096482345793, 3.423380642400947, 3.570698884272451, 4.637652344116065, 5.144206264806106, 5.445812667577695, 6.045037260253290, 6.587699053697936, 6.972897503217870, 7.483038867327786, 8.133291634137818, 8.520769226903582, 9.285244293415359, 9.627710532970778, 9.935164359145431, 10.22951695418102, 10.93971344665488, 11.51777923046308, 11.89558734665692, 12.45241172789937, 12.80491891025848, 13.35940216483618

Graph of the $Z$-function along the critical line