Properties

Label 2-19800-1.1-c1-0-34
Degree $2$
Conductor $19800$
Sign $-1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 11-s − 4·13-s − 4·19-s + 4·23-s + 2·29-s − 8·31-s + 2·37-s + 6·41-s + 6·43-s − 4·47-s − 3·49-s + 6·53-s + 4·59-s − 6·61-s + 16·71-s + 4·73-s − 2·77-s − 8·79-s + 6·83-s − 14·89-s − 8·91-s − 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.301·11-s − 1.10·13-s − 0.917·19-s + 0.834·23-s + 0.371·29-s − 1.43·31-s + 0.328·37-s + 0.937·41-s + 0.914·43-s − 0.583·47-s − 3/7·49-s + 0.824·53-s + 0.520·59-s − 0.768·61-s + 1.89·71-s + 0.468·73-s − 0.227·77-s − 0.900·79-s + 0.658·83-s − 1.48·89-s − 0.838·91-s − 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.89860805547676, −15.30018631438142, −14.74938000010171, −14.48794895250278, −13.87738947774096, −13.10381927765663, −12.60916413160209, −12.28795377815723, −11.29537695987142, −11.13755422131962, −10.46870950191267, −9.814934062023056, −9.233444954426031, −8.636856988369024, −8.009155041721153, −7.441182102712207, −6.960816291197428, −6.159724423850516, −5.425483581664314, −4.890528131044805, −4.338823104628932, −3.540915123756664, −2.571065779145302, −2.114731425546232, −1.103193440697803, 0, 1.103193440697803, 2.114731425546232, 2.571065779145302, 3.540915123756664, 4.338823104628932, 4.890528131044805, 5.425483581664314, 6.159724423850516, 6.960816291197428, 7.441182102712207, 8.009155041721153, 8.636856988369024, 9.233444954426031, 9.814934062023056, 10.46870950191267, 11.13755422131962, 11.29537695987142, 12.28795377815723, 12.60916413160209, 13.10381927765663, 13.87738947774096, 14.48794895250278, 14.74938000010171, 15.30018631438142, 15.89860805547676

Graph of the $Z$-function along the critical line