Properties

Label 1.67.a
Base field $\F_{67}$
Dimension $1$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $1$
L-polynomial:  $1 + 67 x^{2}$
Frobenius angles:  $\pm0.5$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-67}) \)
Galois group:  $C_2$
Jacobians:  $4$
Isomorphism classes:  4

This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $68$ $4624$ $300764$ $20142144$ $1350125108$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $68$ $4624$ $300764$ $20142144$ $1350125108$ $90458983696$ $6060711605324$ $406067637254400$ $27206534396294948$ $1822837807252011664$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67^{2}}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-67}) \).
Endomorphism algebra over $\overline{\F}_{67}$
The base change of $A$ to $\F_{67^{2}}$ is the simple isogeny class 1.4489.fe and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $67$ and $\infty$.

Base change

This is a primitive isogeny class.

Twists

This isogeny class has no twists.