Properties

Label 2-190400-1.1-c1-0-25
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s − 3·11-s − 2·13-s + 17-s − 5·19-s + 2·21-s + 6·23-s − 4·27-s − 9·29-s + 5·31-s − 6·33-s − 2·37-s − 4·39-s + 3·41-s + 10·43-s + 49-s + 2·51-s + 12·53-s − 10·57-s − 9·59-s − 8·61-s + 63-s − 8·67-s + 12·69-s + 12·71-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s − 0.904·11-s − 0.554·13-s + 0.242·17-s − 1.14·19-s + 0.436·21-s + 1.25·23-s − 0.769·27-s − 1.67·29-s + 0.898·31-s − 1.04·33-s − 0.328·37-s − 0.640·39-s + 0.468·41-s + 1.52·43-s + 1/7·49-s + 0.280·51-s + 1.64·53-s − 1.32·57-s − 1.17·59-s − 1.02·61-s + 0.125·63-s − 0.977·67-s + 1.44·69-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.612352321\)
\(L(\frac12)\) \(\approx\) \(2.612352321\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23296961485088, −12.71291184495727, −12.32702367846569, −11.73914770502828, −11.03598774236555, −10.79258735484543, −10.32446282276819, −9.658528257151821, −9.111474608581813, −8.989287949773452, −8.229312409034821, −7.982245053312798, −7.323860720828347, −7.228378655815290, −6.283269970911766, −5.784713119654126, −5.222324330483624, −4.702570530965590, −4.120209431767022, −3.586670128752834, −2.916726338386746, −2.476365246252096, −2.102759977792401, −1.319804094541945, −0.4089897767887607, 0.4089897767887607, 1.319804094541945, 2.102759977792401, 2.476365246252096, 2.916726338386746, 3.586670128752834, 4.120209431767022, 4.702570530965590, 5.222324330483624, 5.784713119654126, 6.283269970911766, 7.228378655815290, 7.323860720828347, 7.982245053312798, 8.229312409034821, 8.989287949773452, 9.111474608581813, 9.658528257151821, 10.32446282276819, 10.79258735484543, 11.03598774236555, 11.73914770502828, 12.32702367846569, 12.71291184495727, 13.23296961485088

Graph of the $Z$-function along the critical line