Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 12 x + 53 x^{2}$ |
| Frobenius angles: | $\pm0.191645762723$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-17}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $42$ | $2772$ | $149058$ | $7894656$ | $418236042$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $2772$ | $149058$ | $7894656$ | $418236042$ | $22164626484$ | $1174712175042$ | $62259688770048$ | $3299763517240554$ | $174887469557763732$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+15 x+15$
- $y^2=x^3+44 x+35$
- $y^2=x^3+30 x+30$
- $y^2=x^3+12 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-17}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.53.m | $2$ | (not in LMFDB) |