Properties

Label 2-17850-1.1-c1-0-15
Degree $2$
Conductor $17850$
Sign $1$
Analytic cond. $142.532$
Root an. cond. $11.9387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 7-s + 8-s + 9-s − 12-s + 4·13-s − 14-s + 16-s − 17-s + 18-s + 2·19-s + 21-s − 6·23-s − 24-s + 4·26-s − 27-s − 28-s − 4·31-s + 32-s − 34-s + 36-s + 4·37-s + 2·38-s − 4·39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s − 0.267·14-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.458·19-s + 0.218·21-s − 1.25·23-s − 0.204·24-s + 0.784·26-s − 0.192·27-s − 0.188·28-s − 0.718·31-s + 0.176·32-s − 0.171·34-s + 1/6·36-s + 0.657·37-s + 0.324·38-s − 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(142.532\)
Root analytic conductor: \(11.9387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.709732905\)
\(L(\frac12)\) \(\approx\) \(2.709732905\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.93967328980765, −15.37140162688512, −14.65747893867627, −14.05853826830567, −13.65271118924176, −12.86424321781939, −12.73236292603794, −11.90393382837549, −11.44588335407632, −10.91541235761321, −10.43153568969608, −9.638990364102186, −9.209244834236118, −8.247764108502827, −7.768891983596329, −7.004788480304444, −6.315510189736657, −5.995176487349081, −5.349182716565686, −4.596625306378115, −3.893732617099481, −3.432142398564531, −2.454910346662638, −1.631591999295443, −0.6485687402843876, 0.6485687402843876, 1.631591999295443, 2.454910346662638, 3.432142398564531, 3.893732617099481, 4.596625306378115, 5.349182716565686, 5.995176487349081, 6.315510189736657, 7.004788480304444, 7.768891983596329, 8.247764108502827, 9.209244834236118, 9.638990364102186, 10.43153568969608, 10.91541235761321, 11.44588335407632, 11.90393382837549, 12.73236292603794, 12.86424321781939, 13.65271118924176, 14.05853826830567, 14.65747893867627, 15.37140162688512, 15.93967328980765

Graph of the $Z$-function along the critical line