Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 12 x + 89 x^{2}$ |
| Frobenius angles: | $\pm0.280588346245$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-53}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $78$ | $7956$ | $706446$ | $62756928$ | $5584104318$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $7956$ | $706446$ | $62756928$ | $5584104318$ | $496980522324$ | $44231321678622$ | $3936588715507968$ | $350356403801460654$ | $31181719939121165076$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+33 x+10$
- $y^2=x^3+88 x+88$
- $y^2=x^3+36 x+36$
- $y^2=x^3+64 x+14$
- $y^2=x^3+37 x+37$
- $y^2=x^3+74 x+74$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-53}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.89.m | $2$ | (not in LMFDB) |