Properties

Label 2-151008-1.1-c1-0-8
Degree $2$
Conductor $151008$
Sign $1$
Analytic cond. $1205.80$
Root an. cond. $34.7247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 4·7-s + 9-s + 13-s + 2·15-s − 4·17-s + 6·19-s + 4·21-s + 6·23-s − 25-s − 27-s − 6·29-s + 6·31-s + 8·35-s − 4·37-s − 39-s + 10·41-s + 8·43-s − 2·45-s − 12·47-s + 9·49-s + 4·51-s − 12·53-s − 6·57-s + 12·59-s − 14·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.277·13-s + 0.516·15-s − 0.970·17-s + 1.37·19-s + 0.872·21-s + 1.25·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s + 1.07·31-s + 1.35·35-s − 0.657·37-s − 0.160·39-s + 1.56·41-s + 1.21·43-s − 0.298·45-s − 1.75·47-s + 9/7·49-s + 0.560·51-s − 1.64·53-s − 0.794·57-s + 1.56·59-s − 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151008\)    =    \(2^{5} \cdot 3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1205.80\)
Root analytic conductor: \(34.7247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 151008,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.055215234\)
\(L(\frac12)\) \(\approx\) \(1.055215234\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12413687896350, −12.82668039317215, −12.47316893013631, −11.86740208444848, −11.38078441061069, −11.04618916107998, −10.66087981310296, −9.758588392625808, −9.599960055024864, −9.166883414601023, −8.513992199151616, −7.856186615620831, −7.412558053507887, −6.913738347931455, −6.510517130734491, −5.965043789634480, −5.483955432829047, −4.740045283671179, −4.349167078828301, −3.555918746139317, −3.316036718437376, −2.709053545237679, −1.840569300990638, −0.8696617086955673, −0.4140621387389451, 0.4140621387389451, 0.8696617086955673, 1.840569300990638, 2.709053545237679, 3.316036718437376, 3.555918746139317, 4.349167078828301, 4.740045283671179, 5.483955432829047, 5.965043789634480, 6.510517130734491, 6.913738347931455, 7.412558053507887, 7.856186615620831, 8.513992199151616, 9.166883414601023, 9.599960055024864, 9.758588392625808, 10.66087981310296, 11.04618916107998, 11.38078441061069, 11.86740208444848, 12.47316893013631, 12.82668039317215, 13.12413687896350

Graph of the $Z$-function along the critical line