sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(151008, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0,0]))
pari:[g,chi] = znchar(Mod(1,151008))
Modulus: | \(151008\) | |
Conductor: | \(1\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(1\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | yes |
Primitive: | no, induced from \(\chi_{1}(0,\cdot)\) |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{151008}(1,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((9439,132133,100673,107329,23233)\) → \((1,1,1,1,1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) | \(37\) |
\( \chi_{ 151008 }(1, a) \) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)