Properties

Label 2-14976-1.1-c1-0-6
Degree $2$
Conductor $14976$
Sign $1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 4·11-s + 13-s − 4·17-s + 6·19-s − 5·25-s + 6·29-s + 4·31-s + 6·37-s + 6·41-s − 4·43-s − 8·47-s + 9·49-s − 6·53-s + 12·59-s + 10·61-s − 2·67-s − 12·71-s − 10·73-s − 16·77-s − 10·79-s + 4·83-s − 10·89-s − 4·91-s + 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s + 1.20·11-s + 0.277·13-s − 0.970·17-s + 1.37·19-s − 25-s + 1.11·29-s + 0.718·31-s + 0.986·37-s + 0.937·41-s − 0.609·43-s − 1.16·47-s + 9/7·49-s − 0.824·53-s + 1.56·59-s + 1.28·61-s − 0.244·67-s − 1.42·71-s − 1.17·73-s − 1.82·77-s − 1.12·79-s + 0.439·83-s − 1.05·89-s − 0.419·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.722188737\)
\(L(\frac12)\) \(\approx\) \(1.722188737\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.03208765022513, −15.80143887752674, −14.92251578792338, −14.37313127258940, −13.74363573370334, −13.22853615181774, −12.87906427258556, −11.94302451980890, −11.71866946241061, −11.10135507984234, −10.08212348458565, −9.821511026325105, −9.295012728910753, −8.696073084409415, −7.998062576743343, −7.116365132968853, −6.644618457157043, −6.178218270648005, −5.559313456727462, −4.496687545612345, −3.980295847531562, −3.204715626059907, −2.670863323228263, −1.510967449248098, −0.5926616672340666, 0.5926616672340666, 1.510967449248098, 2.670863323228263, 3.204715626059907, 3.980295847531562, 4.496687545612345, 5.559313456727462, 6.178218270648005, 6.644618457157043, 7.116365132968853, 7.998062576743343, 8.696073084409415, 9.295012728910753, 9.821511026325105, 10.08212348458565, 11.10135507984234, 11.71866946241061, 11.94302451980890, 12.87906427258556, 13.22853615181774, 13.74363573370334, 14.37313127258940, 14.92251578792338, 15.80143887752674, 16.03208765022513

Graph of the $Z$-function along the critical line