Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
504.a.27216.1 |
504.a |
\( 2^{3} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{5} \cdot 7 \) |
$0$ |
$2$ |
$\Z/4\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.6, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(7.782699\) |
\(0.243209\) |
$[8456,9496,26675348,108864]$ |
$[4228,743250,173847744,45651924783,27216]$ |
$[\frac{12063042849801664}{243},\frac{167186257609000}{81},\frac{3083035208512}{27}]$ |
$y^2 + (x^3 + x)y = 3x^4 + 15x^2 + 21$ |
523.a.523.1 |
523.a |
\( 523 \) |
\( -523 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(24.819904\) |
\(0.248199\) |
$[120,-540,-29169,-2092]$ |
$[60,240,2241,19215,-523]$ |
$[-\frac{777600000}{523},-\frac{51840000}{523},-\frac{8067600}{523}]$ |
$y^2 + (x + 1)y = x^5 - x^4 - x^3$ |
523.a.523.2 |
523.a |
\( 523 \) |
\( -523 \) |
$0$ |
$1$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.992796\) |
\(0.248199\) |
$[332400,10084860,1107044456391,-2092]$ |
$[166200,1149254190,10581558955401,109467476288772525,-523]$ |
$[-\frac{126810465636208320000000000}{523},-\frac{5276053055713522320000000}{523},-\frac{292288477352026798440000}{523}]$ |
$y^2 + xy = x^5 - 31x^4 - 110x^3 + 21x^2 - x$ |
529.a.529.1 |
529.a |
\( 23^{2} \) |
\( 23^{2} \) |
$0$ |
$0$ |
$\Z/11\Z$ |
\(\mathsf{RM}\) |
\(\mathsf{RM}\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.120.2, 3.432.4 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(30.060256\) |
\(0.248432\) |
$[284,2401,246639,-67712]$ |
$[71,110,-624,-14101,-529]$ |
$[-\frac{1804229351}{529},-\frac{39370210}{529},\frac{3145584}{529}]$ |
$y^2 + (x^3 + x + 1)y = -x^5$ |
555.a.8325.1 |
555.a |
\( 3 \cdot 5 \cdot 37 \) |
\( 3^{2} \cdot 5^{2} \cdot 37 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(25.692472\) |
\(0.256925\) |
$[1264,18124,6869487,33300]$ |
$[632,13622,351361,9125317,8325]$ |
$[\frac{100828984082432}{8325},\frac{3438682756096}{8325},\frac{140342016064}{8325}]$ |
$y^2 + (x + 1)y = 3x^5 - 2x^4 - 4x^3 + x^2 + x$ |
574.a.293888.1 |
574.a |
\( 2 \cdot 7 \cdot 41 \) |
\( - 2^{10} \cdot 7 \cdot 41 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.180.3 |
✓ |
✓ |
$1$ |
\( 2 \cdot 5 \) |
\(1.000000\) |
\(11.546350\) |
\(0.288659\) |
$[68,-55823,-955895,-37617664]$ |
$[17,2338,2304,-1356769,-293888]$ |
$[-\frac{1419857}{293888},-\frac{820471}{20992},-\frac{2601}{1148}]$ |
$y^2 + (x^2 + x)y = x^5 - x^4 - 3x^2 + x + 1$ |
576.a.576.1 |
576.a |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{6} \cdot 3^{2} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathsf{CM}\) |
✓ |
$E_2$ |
|
✓ |
|
$C_4$ |
$D_4$ |
$4$ |
$0$ |
2.180.4, 3.1080.16 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(22.396252\) |
\(0.223963\) |
$[68,124,2616,72]$ |
$[68,110,-36,-3637,576]$ |
$[\frac{22717712}{9},\frac{540430}{9},-289]$ |
$y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x$ |
576.b.147456.1 |
576.b |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{14} \cdot 3^{2} \) |
$0$ |
$2$ |
$\Z/4\Z\oplus\Z/4\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathrm{M}_2(\Q)\) |
|
$E_1$ |
|
|
|
$D_4$ |
$D_4$ |
$4$ |
$0$ |
2.180.7, 3.2160.25 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(9.301119\) |
\(0.290660\) |
$[152,109,5469,18]$ |
$[608,14240,405504,10942208,147456]$ |
$[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ |
$y^2 = x^6 + 2x^4 + 2x^2 + 1$ |
578.a.2312.1 |
578.a |
\( 2 \cdot 17^{2} \) |
\( 2^{3} \cdot 17^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(13.910299\) |
\(0.289798\) |
$[228,705,135777,295936]$ |
$[57,106,-992,-16945,2312]$ |
$[\frac{601692057}{2312},\frac{9815229}{1156},-\frac{402876}{289}]$ |
$y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$ |
587.a.587.1 |
587.a |
\( 587 \) |
\( 587 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$10$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.003773\) |
\(29.510964\) |
\(0.111352\) |
$[60,1401,54147,-75136]$ |
$[15,-49,-501,-2479,-587]$ |
$[-\frac{759375}{587},\frac{165375}{587},\frac{112725}{587}]$ |
$y^2 + (x^3 + x + 1)y = -x^2 - x$ |
588.a.18816.1 |
588.a |
\( 2^{2} \cdot 3 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3 \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/24\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.45.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(20.658150\) |
\(0.286919\) |
$[748,11545,2902787,2408448]$ |
$[187,976,-192,-247120,18816]$ |
$[\frac{228669389707}{18816},\frac{398891383}{1176},-\frac{34969}{98}]$ |
$y^2 + (x^3 + 1)y = x^5 + x^4 + 5x^2 + 12x + 8$ |
597.a.597.1 |
597.a |
\( 3 \cdot 199 \) |
\( 3 \cdot 199 \) |
$0$ |
$0$ |
$\Z/7\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(14.411617\) |
\(0.294115\) |
$[120,192,9912,2388]$ |
$[60,118,-68,-4501,597]$ |
$[\frac{259200000}{199},\frac{8496000}{199},-\frac{81600}{199}]$ |
$y^2 + y = x^5 + 2x^4 + 3x^3 + 2x^2 + x$ |
600.a.18000.1 |
600.a |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$6$ |
$4$ |
2.360.2, 3.640.2 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(18.934319\) |
\(0.262977\) |
$[1376,23824,11410044,72000]$ |
$[688,15752,244900,-19908576,18000]$ |
$[\frac{9634345320448}{1125},\frac{320612931584}{1125},\frac{289804864}{45}]$ |
$y^2 + xy = 10x^5 - 18x^4 + 8x^3 + x^2 - x$ |
600.a.96000.1 |
600.a |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3 \cdot 5^{3} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.180.3, 3.640.2 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(9.467159\) |
\(0.262977\) |
$[92,4981,43947,-12000]$ |
$[92,-2968,47600,-1107456,-96000]$ |
$[-\frac{25745372}{375},\frac{9027914}{375},-\frac{62951}{15}]$ |
$y^2 + (x + 1)y = 4x^5 + 5x^4 + 3x^3 + 2x^2$ |
600.b.30000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3 \cdot 5^{4} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[600,18744,4690524,120000]$ |
$[300,626,-198336,-14973169,30000]$ |
$[81000000,563400,-595008]$ |
$y^2 + (x^3 + x)y = x^4 + x^2 - 3$ |
600.b.450000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{5} \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{5} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[18072,38904,233095932,1800000]$ |
$[9036,3395570,1698206400,953774351375,450000]$ |
$[\frac{418329622965299904}{3125},\frac{3479436045234936}{625},\frac{38515932506304}{125}]$ |
$y^2 + (x^3 + x)y = -5x^4 + 25x^2 - 45$ |
603.a.603.1 |
603.a |
\( 3^{2} \cdot 67 \) |
\( - 3^{2} \cdot 67 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(26.910016\) |
\(0.269100\) |
$[1672,75628,49887881,2412]$ |
$[836,16516,-1263521,-332270453,603]$ |
$[\frac{408348897330176}{603},\frac{9649919856896}{603},-\frac{883069772816}{603}]$ |
$y^2 + (x^2 + 1)y = x^5 + 8x^4 + 4x^3 + 4x^2 + 2x$ |
603.a.603.2 |
603.a |
\( 3^{2} \cdot 67 \) |
\( - 3^{2} \cdot 67 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(26.910016\) |
\(0.269100\) |
$[176,148,7375,-2412]$ |
$[88,298,1361,7741,-603]$ |
$[-\frac{5277319168}{603},-\frac{203078656}{603},-\frac{10539584}{603}]$ |
$y^2 + (x^2 + 1)y = x^5 - x^3 + x$ |
604.a.9664.1 |
604.a |
\( 2^{2} \cdot 151 \) |
\( 2^{6} \cdot 151 \) |
$0$ |
$0$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$1$ |
$1$ |
2.6.1, 3.720.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.291788\) |
\(0.291788\) |
$[49556,-797087975,-23996873337603,1236992]$ |
$[12389,39607304,223396249616,299729401586052,9664]$ |
$[\frac{291864493641401980949}{9664},\frac{9414430497536890397}{1208},\frac{2143030742187944921}{604}]$ |
$y^2 + (x^2 + x + 1)y = 4x^5 + 9x^4 + 48x^3 - 4x^2 - 53x - 21$ |
604.a.9664.2 |
604.a |
\( 2^{2} \cdot 151 \) |
\( 2^{6} \cdot 151 \) |
$0$ |
$0$ |
$\Z/27\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$7$ |
$1$ |
2.6.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 3^{2} \) |
\(1.000000\) |
\(23.634831\) |
\(0.291788\) |
$[116,6265,95277,1236992]$ |
$[29,-226,836,-6708,9664]$ |
$[\frac{20511149}{9664},-\frac{2755957}{4832},\frac{175769}{2416}]$ |
$y^2 + (x^3 + 1)y = -x^4 + x^3 + x^2 - x$ |
630.a.34020.1 |
630.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{2} \cdot 3^{5} \cdot 5 \cdot 7 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(19.470889\) |
\(0.304233\) |
$[24100,969793,7474503265,4354560]$ |
$[6025,1472118,470090880,166291536519,34020]$ |
$[\frac{1587871127345703125}{6804},\frac{10732293030978125}{1134},\frac{13543327580000}{27}]$ |
$y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15$ |
640.a.81920.1 |
640.a |
\( 2^{7} \cdot 5 \) |
\( - 2^{14} \cdot 5 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.1, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.405674\) |
\(0.308570\) |
$[912,147,44562,10]$ |
$[3648,552928,111431680,25193348864,81920]$ |
$[\frac{39432490647552}{5},\frac{1638374321664}{5},18102076416]$ |
$y^2 + x^3y = 3x^4 + 13x^2 + 20$ |
640.a.81920.2 |
640.a |
\( 2^{7} \cdot 5 \) |
\( 2^{14} \cdot 5 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.405674\) |
\(0.308570\) |
$[912,147,44562,10]$ |
$[3648,552928,111431680,25193348864,81920]$ |
$[\frac{39432490647552}{5},\frac{1638374321664}{5},18102076416]$ |
$y^2 + x^3y = -3x^4 + 13x^2 - 20$ |
644.a.2576.1 |
644.a |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( - 2^{4} \cdot 7 \cdot 23 \) |
$0$ |
$2$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.4 |
|
|
$2$ |
\( 1 \) |
\(1.000000\) |
\(3.928431\) |
\(0.218246\) |
$[39036,4124865,50880984159,329728]$ |
$[9759,3796384,1910683600,1058457444236,2576]$ |
$[\frac{88516980336138032799}{2576},\frac{220529201888022246}{161},70640465629725]$ |
$y^2 + (x^2 + x)y = -5x^6 + 11x^5 - 20x^4 + 20x^3 - 20x^2 + 11x - 5$ |
644.a.659456.1 |
644.a |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( 2^{12} \cdot 7 \cdot 23 \) |
$0$ |
$1$ |
$\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.720.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.872985\) |
\(0.218246\) |
$[161796,1070662305,46065265919409,84410368]$ |
$[40449,23560804,14638854160,9253881697856,659456]$ |
$[\frac{108277681088425330677249}{659456},\frac{389810454818831018649}{164864},\frac{9297727292338785}{256}]$ |
$y^2 + (x^2 + x)y = -3x^6 - 13x^5 + 4x^4 + 51x^3 + 4x^2 - 13x - 3$ |
644.b.14812.1 |
644.b |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( - 2^{2} \cdot 7 \cdot 23^{2} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.90.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(15.435107\) |
\(0.308702\) |
$[1268,-40511,-17688719,-1895936]$ |
$[317,5875,170781,4905488,-14812]$ |
$[-\frac{3201078401357}{14812},-\frac{187148201375}{14812},-\frac{17161611909}{14812}]$ |
$y^2 + (x^3 + 1)y = x^5 - x^4 - 4x^3 + 5x^2 - x - 1$ |
672.a.172032.1 |
672.a |
\( 2^{5} \cdot 3 \cdot 7 \) |
\( 2^{13} \cdot 3 \cdot 7 \) |
$0$ |
$2$ |
$\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.5 |
|
|
$2$ |
\( 2 \) |
\(1.000000\) |
\(1.113349\) |
\(0.278337\) |
$[16916,151117825,232872423961,-21504]$ |
$[16916,-88822256,277597802496,-798387183476800,-172032]$ |
$[-\frac{1352659309173012149}{168},\frac{419870026410625699}{168},-461744933079368]$ |
$y^2 + (x^3 + x)y = -x^6 - 16x^4 - 75x^2 + 56$ |
676.a.5408.1 |
676.a |
\( 2^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 13^{2} \) |
$0$ |
$0$ |
$\Z/21\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.60.2, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 7 \) |
\(1.000000\) |
\(20.169780\) |
\(0.320155\) |
$[204,3273,161211,692224]$ |
$[51,-28,0,-196,5408]$ |
$[\frac{345025251}{5408},-\frac{928557}{1352},0]$ |
$y^2 + (x^3 + x^2 + x)y = x^3 + 3x^2 + 3x + 1$ |
676.a.562432.1 |
676.a |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{8} \cdot 13^{3} \) |
$0$ |
$0$ |
$\Z/21\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.60.2, 3.2160.20 |
✓ |
✓ |
$1$ |
\( 3 \cdot 7 \) |
\(1.000000\) |
\(6.723260\) |
\(0.320155\) |
$[1620,52953,29527389,71991296]$ |
$[405,4628,-8112,-6175936,562432]$ |
$[\frac{10896201253125}{562432},\frac{5912281125}{10816},-\frac{492075}{208}]$ |
$y^2 + (x^3 + 1)y = 2x^5 + 2x^4 + 4x^3 + 2x^2 + 2x$ |
676.b.17576.1 |
676.b |
\( 2^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 13^{3} \) |
$0$ |
$0$ |
$\Z/3\Z\oplus\Z/3\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathrm{M}_2(\Q)\) |
|
$E_1$ |
|
|
|
$D_6$ |
$D_6$ |
$0$ |
$0$ |
2.120.4, 3.17280.1 |
|
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(7.177121\) |
\(0.265819\) |
$[1244,1249,129167,2249728]$ |
$[311,3978,72332,1667692,17576]$ |
$[\frac{2909390022551}{17576},\frac{4602275343}{676},\frac{10349147}{26}]$ |
$y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$ |
686.a.686.1 |
686.a |
\( 2 \cdot 7^{3} \) |
\( 2 \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(11.491655\) |
\(0.319213\) |
$[420,4305,640185,87808]$ |
$[105,280,-980,-45325,686]$ |
$[\frac{37209375}{2},472500,-15750]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x$ |
688.a.2752.1 |
688.a |
\( 2^{4} \cdot 43 \) |
\( - 2^{6} \cdot 43 \) |
$0$ |
$1$ |
$\Z/20\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 5 \) |
\(1.000000\) |
\(25.707298\) |
\(0.321341\) |
$[32,112,-680,-344]$ |
$[32,-32,1344,10496,-2752]$ |
$[-\frac{524288}{43},\frac{16384}{43},-\frac{21504}{43}]$ |
$y^2 + y = 2x^5 - 5x^4 + 4x^3 - x$ |
688.a.704512.2 |
688.a |
\( 2^{4} \cdot 43 \) |
\( - 2^{14} \cdot 43 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 5 \) |
\(1.000000\) |
\(6.426825\) |
\(0.321341\) |
$[464,-248,-39602,-86]$ |
$[1856,146176,15688704,1937702912,-704512]$ |
$[-\frac{1344218660864}{43},-\frac{57041383424}{43},-\frac{3298550016}{43}]$ |
$y^2 = 2x^5 - 7x^4 - 8x^3 + 2x^2 + 4x + 1$ |
688.a.704512.1 |
688.a |
\( 2^{4} \cdot 43 \) |
\( 2^{14} \cdot 43 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 5 \) |
\(1.000000\) |
\(6.426825\) |
\(0.321341\) |
$[128,532,26830,86]$ |
$[512,5248,-408576,-59183104,704512]$ |
$[\frac{2147483648}{43},\frac{42991616}{43},-\frac{6537216}{43}]$ |
$y^2 = 2x^5 + 4x^3 + x^2 + 2x + 1$ |
691.a.691.1 |
691.a |
\( 691 \) |
\( -691 \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(18.812569\) |
\(0.293946\) |
$[104,-824,-20333,-2764]$ |
$[52,250,601,-7812,-691]$ |
$[-\frac{380204032}{691},-\frac{35152000}{691},-\frac{1625104}{691}]$ |
$y^2 + (x + 1)y = x^5 - x^3 - x^2$ |
704.a.45056.1 |
704.a |
\( 2^{6} \cdot 11 \) |
\( - 2^{12} \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3, 3.80.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(11.976027\) |
\(0.332667\) |
$[134,-464,-15328,-176]$ |
$[268,4230,61444,-356477,-45056]$ |
$[-\frac{1350125107}{44},-\frac{636113745}{352},-\frac{68955529}{704}]$ |
$y^2 + y = 4x^5 + 4x^4 - x^3 - 2x^2$ |
708.a.2832.1 |
708.a |
\( 2^{2} \cdot 3 \cdot 59 \) |
\( 2^{4} \cdot 3 \cdot 59 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(16.267181\) |
\(0.325344\) |
$[148,2065,76361,362496]$ |
$[37,-29,-59,-756,2832]$ |
$[\frac{69343957}{2832},-\frac{1468937}{2832},-\frac{1369}{48}]$ |
$y^2 + (x^2 + x + 1)y = x^5$ |
708.a.19116.1 |
708.a |
\( 2^{2} \cdot 3 \cdot 59 \) |
\( - 2^{2} \cdot 3^{4} \cdot 59 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(16.267181\) |
\(0.325344\) |
$[908,-132815,8426215,2446848]$ |
$[227,7681,-438901,-39657072,19116]$ |
$[\frac{602738989907}{19116},\frac{89845294523}{19116},-\frac{383324231}{324}]$ |
$y^2 + (x^3 + 1)y = -x^5 + 4x^2 + 4x - 1$ |
708.a.181248.1 |
708.a |
\( 2^{2} \cdot 3 \cdot 59 \) |
\( - 2^{10} \cdot 3 \cdot 59 \) |
$0$ |
$3$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$0$ |
$0$ |
2.15.1 |
✓ |
✓ |
$4$ |
\( 1 \) |
\(1.000000\) |
\(0.325344\) |
\(0.325344\) |
$[234100,3468879025,202585466081177,-23199744]$ |
$[58525,-1820975,60952909,62829762150,-181248]$ |
$[-\frac{686605237334059580078125}{181248},\frac{365029741228054296875}{181248},-\frac{208774418179643125}{181248}]$ |
$y^2 + (x^3 + 1)y = -x^6 - 4x^5 + 9x^4 + 48x^3 - 41x^2 - 98x - 36$ |
709.a.709.1 |
709.a |
\( 709 \) |
\( 709 \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(18.361162\) |
\(0.286893\) |
$[160,-1280,-42089,2836]$ |
$[80,480,1121,-35180,709]$ |
$[\frac{3276800000}{709},\frac{245760000}{709},\frac{7174400}{709}]$ |
$y^2 + xy = x^5 - 2x^2 + x$ |
713.a.713.1 |
713.a |
\( 23 \cdot 31 \) |
\( 23 \cdot 31 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$8$ |
$0$ |
2.20.2 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.004592\) |
\(27.957889\) |
\(0.128395\) |
$[36,1305,-2547,91264]$ |
$[9,-51,173,-261,713]$ |
$[\frac{59049}{713},-\frac{37179}{713},\frac{14013}{713}]$ |
$y^2 + (x^3 + x + 1)y = -x^5 - x$ |
713.b.713.1 |
713.b |
\( 23 \cdot 31 \) |
\( 23 \cdot 31 \) |
$0$ |
$0$ |
$\Z/9\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.20.2, 3.80.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(23.149881\) |
\(0.285801\) |
$[92,73,6379,-91264]$ |
$[23,19,-41,-326,-713]$ |
$[-\frac{279841}{31},-\frac{10051}{31},\frac{943}{31}]$ |
$y^2 + (x^3 + x + 1)y = -x^4$ |
720.a.6480.1 |
720.a |
\( 2^{4} \cdot 3^{2} \cdot 5 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.180.7, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(9.444268\) |
\(0.295133\) |
$[2360,11992,9047820,25920]$ |
$[1180,56018,3453120,234166319,6480]$ |
$[\frac{28596971960000}{81},\frac{1150492082200}{81},\frac{6677950400}{9}]$ |
$y^2 + (x^3 + x)y = 2x^4 + 7x^2 + 5$ |
720.b.116640.1 |
720.b |
\( 2^{4} \cdot 3^{2} \cdot 5 \) |
\( 2^{5} \cdot 3^{6} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(14.457058\) |
\(0.301189\) |
$[35416,45688,537039964,466560]$ |
$[17708,13057938,12831384960,14177105014959,116640]$ |
$[\frac{54412363190235229024}{3645},\frac{251762275020280012}{405},\frac{310461362928064}{9}]$ |
$y^2 + (x^3 + x)y = -6x^4 + 39x^2 - 90$ |
726.a.1452.1 |
726.a |
\( 2 \cdot 3 \cdot 11^{2} \) |
\( - 2^{2} \cdot 3 \cdot 11^{2} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(15.124086\) |
\(0.302482\) |
$[760,-69236,-16142609,-5808]$ |
$[380,17556,702601,-10306189,-1452]$ |
$[-\frac{1980879200000}{363},-\frac{7297976000}{11},-\frac{25363896100}{363}]$ |
$y^2 + (x^2 + 1)y = 2x^5 + 2x^4 + 6x^3 - 2x^2 - x$ |
731.a.12427.1 |
731.a |
\( 17 \cdot 43 \) |
\( - 17^{2} \cdot 43 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(14.926779\) |
\(0.298536\) |
$[480,-21564,-3373785,-49708]$ |
$[240,5994,167265,1053891,-12427]$ |
$[-\frac{796262400000}{12427},-\frac{82861056000}{12427},-\frac{9634464000}{12427}]$ |
$y^2 + (x^3 + x^2)y = x^5 + 2x^4 - x - 3$ |
741.a.28899.1 |
741.a |
\( 3 \cdot 13 \cdot 19 \) |
\( - 3^{2} \cdot 13^{2} \cdot 19 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(18.756843\) |
\(0.293076\) |
$[576,-840,740385,115596]$ |
$[288,3596,-38169,-5980972,28899]$ |
$[\frac{220150628352}{3211},\frac{9544531968}{3211},-\frac{351765504}{3211}]$ |
$y^2 + (x + 1)y = -3x^5 - x^4 + 2x^2 + x$ |
743.a.743.1 |
743.a |
\( 743 \) |
\( -743 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$8$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.004577\) |
\(28.765391\) |
\(0.131656\) |
$[28,1945,15219,95104]$ |
$[7,-79,-53,-1653,743]$ |
$[\frac{16807}{743},-\frac{27097}{743},-\frac{2597}{743}]$ |
$y^2 + (x^3 + x + 1)y = -x^4 + x^2$ |
745.a.745.1 |
745.a |
\( 5 \cdot 149 \) |
\( - 5 \cdot 149 \) |
$0$ |
$0$ |
$\Z/9\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.10.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(24.572840\) |
\(0.303368\) |
$[124,1417,38763,95360]$ |
$[31,-19,39,212,745]$ |
$[\frac{28629151}{745},-\frac{566029}{745},\frac{37479}{745}]$ |
$y^2 + (x^3 + x + 1)y = -x$ |
762.a.3048.1 |
762.a |
\( 2 \cdot 3 \cdot 127 \) |
\( - 2^{3} \cdot 3 \cdot 127 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.15.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(16.733449\) |
\(0.348614\) |
$[428,3169,355487,390144]$ |
$[107,345,1823,19009,3048]$ |
$[\frac{14025517307}{3048},\frac{140879945}{1016},\frac{20871527}{3048}]$ |
$y^2 + (x^3 + x^2 + x)y = x^2 + x + 1$ |