Properties

Label 523.a.523.2
Conductor 523
Discriminant -523
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = x^5 - 31x^4 - 110x^3 + 21x^2 - x$ (homogenize, simplify)
$y^2 + xz^2y = x^5z - 31x^4z^2 - 110x^3z^3 + 21x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 - 124x^4 - 440x^3 + 85x^2 - 4x$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 21, -110, -31, 1]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 21, -110, -31, 1], R![0, 1]);
 
sage: X = HyperellipticCurve(R([0, -4, 85, -440, -124, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(523\) \(=\) \( 523 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-523\) \(=\) \( -523 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1329600\) \(=\)  \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 277 \)
\( I_4 \)  \(=\) \(161357760\) \(=\)  \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 179 \cdot 313 \)
\( I_6 \)  \(=\) \(70850845209024\) \(=\)  \( 2^{6} \cdot 3^{4} \cdot 37 \cdot 151 \cdot 479 \cdot 5107 \)
\( I_{10} \)  \(=\) \(-2142208\) \(=\)  \( - 2^{12} \cdot 523 \)
\( J_2 \)  \(=\) \(166200\) \(=\)  \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 277 \)
\( J_4 \)  \(=\) \(1149254190\) \(=\)  \( 2 \cdot 3^{3} \cdot 5 \cdot 7 \cdot 41 \cdot 14831 \)
\( J_6 \)  \(=\) \(10581558955401\) \(=\)  \( 3 \cdot 7 \cdot 431 \cdot 1169103851 \)
\( J_8 \)  \(=\) \(109467476288772525\) \(=\)  \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 6318469049857 \)
\( J_{10} \)  \(=\) \(-523\) \(=\)  \( -523 \)
\( g_1 \)  \(=\) \(-126810465636208320000000000/523\)
\( g_2 \)  \(=\) \(-5276053055713522320000000/523\)
\( g_3 \)  \(=\) \(-292288477352026798440000/523\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1)\)

magma: [C![0,0,1],C![1,0,0]];
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: 4.2.2092.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 0.992796 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.248199 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(523\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 24 T + 523 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).