Properties

Label 574.a.293888.1
Conductor 574
Discriminant -293888
Mordell-Weil group \(\Z/{2}\Z \times \Z/{10}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 1, -3, 0, -1, 1], R![0, 1, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 1, -3, 0, -1, 1]), R([0, 1, 1]))
 

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 1, -3, 0, -1, 1], R![0, 1, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([4, 4, -11, 2, -3, 4]))
 

$y^2 + (x^2 + x)y = x^5 - x^4 - 3x^2 + x + 1$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z - x^4z^2 - 3x^2z^4 + xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 - 3x^4 + 2x^3 - 11x^2 + 4x + 4$ (minimize, homogenize)

Invariants

\( N \)  =  \(574\) = \( 2 \cdot 7 \cdot 41 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
\( \Delta \)  =  \(-293888\) = \( - 2^{10} \cdot 7 \cdot 41 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  = \(136\) =  \( 2^{3} \cdot 17 \)
\( I_4 \)  = \(-223292\) =  \( - 2^{2} \cdot 55823 \)
\( I_6 \)  = \(-7647160\) =  \( - 2^{3} \cdot 5 \cdot 37 \cdot 5167 \)
\( I_{10} \)  = \(-1203765248\) =  \( - 2^{22} \cdot 7 \cdot 41 \)
\( J_2 \)  = \(17\) =  \( 17 \)
\( J_4 \)  = \(2338\) =  \( 2 \cdot 7 \cdot 167 \)
\( J_6 \)  = \(2304\) =  \( 2^{8} \cdot 3^{2} \)
\( J_8 \)  = \(-1356769\) =  \( - 331 \cdot 4099 \)
\( J_{10} \)  = \(-293888\) =  \( - 2^{10} \cdot 7 \cdot 41 \)
\( g_1 \)  = \(-1419857/293888\)
\( g_2 \)  = \(-820471/20992\)
\( g_3 \)  = \(-2601/1148\)

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$

Rational points

magma: [C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,0,0],C![2,-7,1],C![2,1,1]];
 

Points: \((1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : -1 : 1),\, (2 : 1 : 1),\, (2 : -7 : 1)\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(2\)

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

Mordell-Weil group of the Jacobian:

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Group structure: \(\Z/{2}\Z \times \Z/{10}\Z\)

Generator Height Order
\(4x^2 - 3xz - 2z^2\) \(=\) \(0,\) \(8y\) \(=\) \(-7xz^2 - 2z^3\) \(0\) \(2\)
\((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 + z^3\) \(0\) \(10\)

2-torsion field: \(\Q(\sqrt{-7}, \sqrt{41})\)

BSD invariants

Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 11.54635 \)
Tamagawa product: \( 10 \)
Torsion order:\( 20 \)
Leading coefficient: \( 0.288658 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(2\) \(10\) \(1\) \(10\) \(( 1 - T )( 1 + T + 2 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 7 T^{2} )\)
\(41\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 2 T + 41 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).