Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^2 + 1)y = 2x^5 + 2x^4 + 6x^3 - 2x^2 - x$ | (homogenize, simplify) |
$y^2 + (x^2z + z^3)y = 2x^5z + 2x^4z^2 + 6x^3z^3 - 2x^2z^4 - xz^5$ | (dehomogenize, simplify) |
$y^2 = 8x^5 + 9x^4 + 24x^3 - 6x^2 - 4x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(726\) | \(=\) | \( 2 \cdot 3 \cdot 11^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-1452\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 11^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(760\) | \(=\) | \( 2^{3} \cdot 5 \cdot 19 \) |
\( I_4 \) | \(=\) | \(-69236\) | \(=\) | \( - 2^{2} \cdot 19 \cdot 911 \) |
\( I_6 \) | \(=\) | \(-16142609\) | \(=\) | \( - 7^{3} \cdot 19 \cdot 2477 \) |
\( I_{10} \) | \(=\) | \(-5808\) | \(=\) | \( - 2^{4} \cdot 3 \cdot 11^{2} \) |
\( J_2 \) | \(=\) | \(380\) | \(=\) | \( 2^{2} \cdot 5 \cdot 19 \) |
\( J_4 \) | \(=\) | \(17556\) | \(=\) | \( 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 19 \) |
\( J_6 \) | \(=\) | \(702601\) | \(=\) | \( 19 \cdot 36979 \) |
\( J_8 \) | \(=\) | \(-10306189\) | \(=\) | \( - 19^{2} \cdot 28549 \) |
\( J_{10} \) | \(=\) | \(-1452\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 11^{2} \) |
\( g_1 \) | \(=\) | \(-1980879200000/363\) | ||
\( g_2 \) | \(=\) | \(-7297976000/11\) | ||
\( g_3 \) | \(=\) | \(-25363896100/363\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{10}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : -1 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(10\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : -1 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(10\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : -1 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - z^3\) | \(0\) | \(10\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 15.12408 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 10 \) |
Leading coefficient: | \( 0.302481 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(2\) | \(2\) | \(-1^*\) | \(( 1 - T )( 1 + 2 T + 2 T^{2} )\) | yes | |
\(3\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + T + 3 T^{2} )\) | yes | |
\(11\) | \(2\) | \(2\) | \(1\) | \(1\) | \(( 1 - T )^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.60.1 | yes |
\(3\) | 3.90.1 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 66.c
Elliptic curve isogeny class 11.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(5\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).