# Properties

 Label 11.2.a.a Level $11$ Weight $2$ Character orbit 11.a Self dual yes Analytic conductor $0.088$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

This is the first weight 2 newform when ordered by level.

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [11,2,Mod(1,11)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(11, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("11.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 11.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.0878354422234$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{2} - q^{3} + 2 q^{4} + q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{9}+O(q^{10})$$ q - 2 * q^2 - q^3 + 2 * q^4 + q^5 + 2 * q^6 - 2 * q^7 - 2 * q^9 $$q - 2 q^{2} - q^{3} + 2 q^{4} + q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{9} - 2 q^{10} + q^{11} - 2 q^{12} + 4 q^{13} + 4 q^{14} - q^{15} - 4 q^{16} - 2 q^{17} + 4 q^{18} + 2 q^{20} + 2 q^{21} - 2 q^{22} - q^{23} - 4 q^{25} - 8 q^{26} + 5 q^{27} - 4 q^{28} + 2 q^{30} + 7 q^{31} + 8 q^{32} - q^{33} + 4 q^{34} - 2 q^{35} - 4 q^{36} + 3 q^{37} - 4 q^{39} - 8 q^{41} - 4 q^{42} - 6 q^{43} + 2 q^{44} - 2 q^{45} + 2 q^{46} + 8 q^{47} + 4 q^{48} - 3 q^{49} + 8 q^{50} + 2 q^{51} + 8 q^{52} - 6 q^{53} - 10 q^{54} + q^{55} + 5 q^{59} - 2 q^{60} + 12 q^{61} - 14 q^{62} + 4 q^{63} - 8 q^{64} + 4 q^{65} + 2 q^{66} - 7 q^{67} - 4 q^{68} + q^{69} + 4 q^{70} - 3 q^{71} + 4 q^{73} - 6 q^{74} + 4 q^{75} - 2 q^{77} + 8 q^{78} - 10 q^{79} - 4 q^{80} + q^{81} + 16 q^{82} - 6 q^{83} + 4 q^{84} - 2 q^{85} + 12 q^{86} + 15 q^{89} + 4 q^{90} - 8 q^{91} - 2 q^{92} - 7 q^{93} - 16 q^{94} - 8 q^{96} - 7 q^{97} + 6 q^{98} - 2 q^{99}+O(q^{100})$$ q - 2 * q^2 - q^3 + 2 * q^4 + q^5 + 2 * q^6 - 2 * q^7 - 2 * q^9 - 2 * q^10 + q^11 - 2 * q^12 + 4 * q^13 + 4 * q^14 - q^15 - 4 * q^16 - 2 * q^17 + 4 * q^18 + 2 * q^20 + 2 * q^21 - 2 * q^22 - q^23 - 4 * q^25 - 8 * q^26 + 5 * q^27 - 4 * q^28 + 2 * q^30 + 7 * q^31 + 8 * q^32 - q^33 + 4 * q^34 - 2 * q^35 - 4 * q^36 + 3 * q^37 - 4 * q^39 - 8 * q^41 - 4 * q^42 - 6 * q^43 + 2 * q^44 - 2 * q^45 + 2 * q^46 + 8 * q^47 + 4 * q^48 - 3 * q^49 + 8 * q^50 + 2 * q^51 + 8 * q^52 - 6 * q^53 - 10 * q^54 + q^55 + 5 * q^59 - 2 * q^60 + 12 * q^61 - 14 * q^62 + 4 * q^63 - 8 * q^64 + 4 * q^65 + 2 * q^66 - 7 * q^67 - 4 * q^68 + q^69 + 4 * q^70 - 3 * q^71 + 4 * q^73 - 6 * q^74 + 4 * q^75 - 2 * q^77 + 8 * q^78 - 10 * q^79 - 4 * q^80 + q^81 + 16 * q^82 - 6 * q^83 + 4 * q^84 - 2 * q^85 + 12 * q^86 + 15 * q^89 + 4 * q^90 - 8 * q^91 - 2 * q^92 - 7 * q^93 - 16 * q^94 - 8 * q^96 - 7 * q^97 + 6 * q^98 - 2 * q^99

## Expression as an eta quotient

$$f(z) = \eta(z)^{2}\eta(11z)^{2}=q\prod_{n=1}^\infty(1 - q^{n})^{2}(1 - q^{11n})^{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−2.00000 −1.00000 2.00000 1.00000 2.00000 −2.00000 0 −2.00000 −2.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.2.a.a 1
3.b odd 2 1 99.2.a.d 1
4.b odd 2 1 176.2.a.b 1
5.b even 2 1 275.2.a.b 1
5.c odd 4 2 275.2.b.a 2
7.b odd 2 1 539.2.a.a 1
7.c even 3 2 539.2.e.h 2
7.d odd 6 2 539.2.e.g 2
8.b even 2 1 704.2.a.h 1
8.d odd 2 1 704.2.a.c 1
9.c even 3 2 891.2.e.k 2
9.d odd 6 2 891.2.e.b 2
11.b odd 2 1 121.2.a.d 1
11.c even 5 4 121.2.c.e 4
11.d odd 10 4 121.2.c.a 4
12.b even 2 1 1584.2.a.g 1
13.b even 2 1 1859.2.a.b 1
15.d odd 2 1 2475.2.a.a 1
15.e even 4 2 2475.2.c.a 2
16.e even 4 2 2816.2.c.j 2
16.f odd 4 2 2816.2.c.f 2
17.b even 2 1 3179.2.a.a 1
19.b odd 2 1 3971.2.a.b 1
20.d odd 2 1 4400.2.a.i 1
20.e even 4 2 4400.2.b.h 2
21.c even 2 1 4851.2.a.t 1
23.b odd 2 1 5819.2.a.a 1
24.f even 2 1 6336.2.a.bu 1
24.h odd 2 1 6336.2.a.br 1
28.d even 2 1 8624.2.a.j 1
29.b even 2 1 9251.2.a.d 1
33.d even 2 1 1089.2.a.b 1
44.c even 2 1 1936.2.a.i 1
55.d odd 2 1 3025.2.a.a 1
77.b even 2 1 5929.2.a.h 1
88.b odd 2 1 7744.2.a.x 1
88.g even 2 1 7744.2.a.k 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.2.a.a 1 1.a even 1 1 trivial
99.2.a.d 1 3.b odd 2 1
121.2.a.d 1 11.b odd 2 1
121.2.c.a 4 11.d odd 10 4
121.2.c.e 4 11.c even 5 4
176.2.a.b 1 4.b odd 2 1
275.2.a.b 1 5.b even 2 1
275.2.b.a 2 5.c odd 4 2
539.2.a.a 1 7.b odd 2 1
539.2.e.g 2 7.d odd 6 2
539.2.e.h 2 7.c even 3 2
704.2.a.c 1 8.d odd 2 1
704.2.a.h 1 8.b even 2 1
891.2.e.b 2 9.d odd 6 2
891.2.e.k 2 9.c even 3 2
1089.2.a.b 1 33.d even 2 1
1584.2.a.g 1 12.b even 2 1
1859.2.a.b 1 13.b even 2 1
1936.2.a.i 1 44.c even 2 1
2475.2.a.a 1 15.d odd 2 1
2475.2.c.a 2 15.e even 4 2
2816.2.c.f 2 16.f odd 4 2
2816.2.c.j 2 16.e even 4 2
3025.2.a.a 1 55.d odd 2 1
3179.2.a.a 1 17.b even 2 1
3971.2.a.b 1 19.b odd 2 1
4400.2.a.i 1 20.d odd 2 1
4400.2.b.h 2 20.e even 4 2
4851.2.a.t 1 21.c even 2 1
5819.2.a.a 1 23.b odd 2 1
5929.2.a.h 1 77.b even 2 1
6336.2.a.br 1 24.h odd 2 1
6336.2.a.bu 1 24.f even 2 1
7744.2.a.k 1 88.g even 2 1
7744.2.a.x 1 88.b odd 2 1
8624.2.a.j 1 28.d even 2 1
9251.2.a.d 1 29.b even 2 1

## Hecke kernels

This newform subspace is the entire newspace $$S_{2}^{\mathrm{new}}(\Gamma_0(11))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 2$$
$3$ $$T + 1$$
$5$ $$T - 1$$
$7$ $$T + 2$$
$11$ $$T - 1$$
$13$ $$T - 4$$
$17$ $$T + 2$$
$19$ $$T$$
$23$ $$T + 1$$
$29$ $$T$$
$31$ $$T - 7$$
$37$ $$T - 3$$
$41$ $$T + 8$$
$43$ $$T + 6$$
$47$ $$T - 8$$
$53$ $$T + 6$$
$59$ $$T - 5$$
$61$ $$T - 12$$
$67$ $$T + 7$$
$71$ $$T + 3$$
$73$ $$T - 4$$
$79$ $$T + 10$$
$83$ $$T + 6$$
$89$ $$T - 15$$
$97$ $$T + 7$$