# Properties

 Label 66.2.a.c Level $66$ Weight $2$ Character orbit 66.a Self dual yes Analytic conductor $0.527$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [66,2,Mod(1,66)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(66, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("66.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$66 = 2 \cdot 3 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 66.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.527012653340$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} - 4 q^{5} + q^{6} - 2 q^{7} + q^{8} + q^{9}+O(q^{10})$$ q + q^2 + q^3 + q^4 - 4 * q^5 + q^6 - 2 * q^7 + q^8 + q^9 $$q + q^{2} + q^{3} + q^{4} - 4 q^{5} + q^{6} - 2 q^{7} + q^{8} + q^{9} - 4 q^{10} + q^{11} + q^{12} + 4 q^{13} - 2 q^{14} - 4 q^{15} + q^{16} - 2 q^{17} + q^{18} - 4 q^{20} - 2 q^{21} + q^{22} - 6 q^{23} + q^{24} + 11 q^{25} + 4 q^{26} + q^{27} - 2 q^{28} + 10 q^{29} - 4 q^{30} - 8 q^{31} + q^{32} + q^{33} - 2 q^{34} + 8 q^{35} + q^{36} - 2 q^{37} + 4 q^{39} - 4 q^{40} + 2 q^{41} - 2 q^{42} + 4 q^{43} + q^{44} - 4 q^{45} - 6 q^{46} - 2 q^{47} + q^{48} - 3 q^{49} + 11 q^{50} - 2 q^{51} + 4 q^{52} + 4 q^{53} + q^{54} - 4 q^{55} - 2 q^{56} + 10 q^{58} - 4 q^{60} - 8 q^{61} - 8 q^{62} - 2 q^{63} + q^{64} - 16 q^{65} + q^{66} - 12 q^{67} - 2 q^{68} - 6 q^{69} + 8 q^{70} + 2 q^{71} + q^{72} - 6 q^{73} - 2 q^{74} + 11 q^{75} - 2 q^{77} + 4 q^{78} + 10 q^{79} - 4 q^{80} + q^{81} + 2 q^{82} + 4 q^{83} - 2 q^{84} + 8 q^{85} + 4 q^{86} + 10 q^{87} + q^{88} + 10 q^{89} - 4 q^{90} - 8 q^{91} - 6 q^{92} - 8 q^{93} - 2 q^{94} + q^{96} - 2 q^{97} - 3 q^{98} + q^{99}+O(q^{100})$$ q + q^2 + q^3 + q^4 - 4 * q^5 + q^6 - 2 * q^7 + q^8 + q^9 - 4 * q^10 + q^11 + q^12 + 4 * q^13 - 2 * q^14 - 4 * q^15 + q^16 - 2 * q^17 + q^18 - 4 * q^20 - 2 * q^21 + q^22 - 6 * q^23 + q^24 + 11 * q^25 + 4 * q^26 + q^27 - 2 * q^28 + 10 * q^29 - 4 * q^30 - 8 * q^31 + q^32 + q^33 - 2 * q^34 + 8 * q^35 + q^36 - 2 * q^37 + 4 * q^39 - 4 * q^40 + 2 * q^41 - 2 * q^42 + 4 * q^43 + q^44 - 4 * q^45 - 6 * q^46 - 2 * q^47 + q^48 - 3 * q^49 + 11 * q^50 - 2 * q^51 + 4 * q^52 + 4 * q^53 + q^54 - 4 * q^55 - 2 * q^56 + 10 * q^58 - 4 * q^60 - 8 * q^61 - 8 * q^62 - 2 * q^63 + q^64 - 16 * q^65 + q^66 - 12 * q^67 - 2 * q^68 - 6 * q^69 + 8 * q^70 + 2 * q^71 + q^72 - 6 * q^73 - 2 * q^74 + 11 * q^75 - 2 * q^77 + 4 * q^78 + 10 * q^79 - 4 * q^80 + q^81 + 2 * q^82 + 4 * q^83 - 2 * q^84 + 8 * q^85 + 4 * q^86 + 10 * q^87 + q^88 + 10 * q^89 - 4 * q^90 - 8 * q^91 - 6 * q^92 - 8 * q^93 - 2 * q^94 + q^96 - 2 * q^97 - 3 * q^98 + q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 1.00000 −4.00000 1.00000 −2.00000 1.00000 1.00000 −4.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 66.2.a.c 1
3.b odd 2 1 198.2.a.c 1
4.b odd 2 1 528.2.a.a 1
5.b even 2 1 1650.2.a.c 1
5.c odd 4 2 1650.2.c.m 2
7.b odd 2 1 3234.2.a.s 1
8.b even 2 1 2112.2.a.n 1
8.d odd 2 1 2112.2.a.bd 1
9.c even 3 2 1782.2.e.l 2
9.d odd 6 2 1782.2.e.n 2
11.b odd 2 1 726.2.a.d 1
11.c even 5 4 726.2.e.e 4
11.d odd 10 4 726.2.e.m 4
12.b even 2 1 1584.2.a.s 1
15.d odd 2 1 4950.2.a.bo 1
15.e even 4 2 4950.2.c.d 2
21.c even 2 1 9702.2.a.a 1
24.f even 2 1 6336.2.a.d 1
24.h odd 2 1 6336.2.a.c 1
33.d even 2 1 2178.2.a.m 1
44.c even 2 1 5808.2.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.c 1 1.a even 1 1 trivial
198.2.a.c 1 3.b odd 2 1
528.2.a.a 1 4.b odd 2 1
726.2.a.d 1 11.b odd 2 1
726.2.e.e 4 11.c even 5 4
726.2.e.m 4 11.d odd 10 4
1584.2.a.s 1 12.b even 2 1
1650.2.a.c 1 5.b even 2 1
1650.2.c.m 2 5.c odd 4 2
1782.2.e.l 2 9.c even 3 2
1782.2.e.n 2 9.d odd 6 2
2112.2.a.n 1 8.b even 2 1
2112.2.a.bd 1 8.d odd 2 1
2178.2.a.m 1 33.d even 2 1
3234.2.a.s 1 7.b odd 2 1
4950.2.a.bo 1 15.d odd 2 1
4950.2.c.d 2 15.e even 4 2
5808.2.a.b 1 44.c even 2 1
6336.2.a.c 1 24.h odd 2 1
6336.2.a.d 1 24.f even 2 1
9702.2.a.a 1 21.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5} + 4$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(66))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T - 1$$
$5$ $$T + 4$$
$7$ $$T + 2$$
$11$ $$T - 1$$
$13$ $$T - 4$$
$17$ $$T + 2$$
$19$ $$T$$
$23$ $$T + 6$$
$29$ $$T - 10$$
$31$ $$T + 8$$
$37$ $$T + 2$$
$41$ $$T - 2$$
$43$ $$T - 4$$
$47$ $$T + 2$$
$53$ $$T - 4$$
$59$ $$T$$
$61$ $$T + 8$$
$67$ $$T + 12$$
$71$ $$T - 2$$
$73$ $$T + 6$$
$79$ $$T - 10$$
$83$ $$T - 4$$
$89$ $$T - 10$$
$97$ $$T + 2$$