Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x^2)y = x^5 + 2x^4 - x - 3$ | (homogenize, simplify) |
$y^2 + (x^3 + x^2z)y = x^5z + 2x^4z^2 - xz^5 - 3z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 6x^5 + 9x^4 - 4x - 12$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(731\) | \(=\) | \( 17 \cdot 43 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-12427\) | \(=\) | \( - 17^{2} \cdot 43 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(480\) | \(=\) | \( 2^{5} \cdot 3 \cdot 5 \) |
\( I_4 \) | \(=\) | \(-21564\) | \(=\) | \( - 2^{2} \cdot 3^{2} \cdot 599 \) |
\( I_6 \) | \(=\) | \(-3373785\) | \(=\) | \( - 3^{3} \cdot 5 \cdot 67 \cdot 373 \) |
\( I_{10} \) | \(=\) | \(-49708\) | \(=\) | \( - 2^{2} \cdot 17^{2} \cdot 43 \) |
\( J_2 \) | \(=\) | \(240\) | \(=\) | \( 2^{4} \cdot 3 \cdot 5 \) |
\( J_4 \) | \(=\) | \(5994\) | \(=\) | \( 2 \cdot 3^{4} \cdot 37 \) |
\( J_6 \) | \(=\) | \(167265\) | \(=\) | \( 3^{4} \cdot 5 \cdot 7 \cdot 59 \) |
\( J_8 \) | \(=\) | \(1053891\) | \(=\) | \( 3^{5} \cdot 4337 \) |
\( J_{10} \) | \(=\) | \(-12427\) | \(=\) | \( - 17^{2} \cdot 43 \) |
\( g_1 \) | \(=\) | \(-796262400000/12427\) | ||
\( g_2 \) | \(=\) | \(-82861056000/12427\) | ||
\( g_3 \) | \(=\) | \(-9634464000/12427\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1),\, (-3 : 9 : 1)\)
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{10}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 + 8xz + 7z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-8xz^2 - 11z^3\) | \(0\) | \(10\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 + 8xz + 7z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-8xz^2 - 11z^3\) | \(0\) | \(10\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(2x^2 + 8xz + 7z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(x^3 + x^2z - 16xz^2 - 22z^3\) | \(0\) | \(10\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 14.92677 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 10 \) |
Leading coefficient: | \( 0.298535 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(17\) | \(1\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )( 1 - 3 T + 17 T^{2} )\) | yes | |
\(43\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 - 4 T + 43 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.30.3 | yes |
\(5\) | not computed | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).