Properties

Label 672.a.172032.1
Conductor 672
Discriminant 172032
Mordell-Weil group \(\Z/{4}\Z\)
Sato-Tate group $G_{3,3}$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = -x^6 - 16x^4 - 75x^2 + 56$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = -x^6 - 16x^4z^2 - 75x^2z^4 + 56z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 - 62x^4 - 299x^2 + 224$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![56, 0, -75, 0, -16, 0, -1], R![0, 1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([56, 0, -75, 0, -16, 0, -1]), R([0, 1, 0, 1]));
 
magma: X,pi:= SimplifiedModel(C);
 
sage: X = HyperellipticCurve(R([224, 0, -299, 0, -62, 0, -3]))
 

Invariants

Conductor: \( N \)  =  \(672\) = \( 2^{5} \cdot 3 \cdot 7 \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(672,2),R![1, 1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(172032\) = \( 2^{13} \cdot 3 \cdot 7 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(-135328\) =  \( - 2^{5} \cdot 4229 \)
\( I_4 \)  = \(9671540800\) =  \( 2^{6} \cdot 5^{2} \cdot 6044713 \)
\( I_6 \)  = \(-119230681068032\) =  \( - 2^{9} \cdot 397 \cdot 586580413 \)
\( I_{10} \)  = \(704643072\) =  \( 2^{25} \cdot 3 \cdot 7 \)
\( J_2 \)  = \(-16916\) =  \( - 2^{2} \cdot 4229 \)
\( J_4 \)  = \(-88822256\) =  \( - 2^{4} \cdot 103 \cdot 53897 \)
\( J_6 \)  = \(-277597802496\) =  \( - 2^{12} \cdot 3 \cdot 7 \cdot 3227281 \)
\( J_8 \)  = \(-798387183476800\) =  \( - 2^{6} \cdot 5^{2} \cdot 107 \cdot 991 \cdot 4705829 \)
\( J_{10} \)  = \(172032\) =  \( 2^{13} \cdot 3 \cdot 7 \)
\( g_1 \)  = \(-1352659309173012149/168\)
\( g_2 \)  = \(419870026410625699/168\)
\( g_3 \)  = \(-461744933079368\)

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.

magma: [];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian:

Group structure: \(\Z/{4}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + 11z^2\) \(=\) \(0,\) \(y\) \(=\) \(5xz^2 + z^3\) \(0\) \(4\)

2-torsion field: 8.0.199148544.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 1.113349 \)
Tamagawa product: \( 2 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.278337 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(2\) \(13\) \(5\) \(2\) \(1 + T\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 3 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 7 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $G_{3,3}$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
  Elliptic curve 48.a1
  Elliptic curve 14.a1

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).