Properties

Label 603.a.603.1
Conductor 603
Discriminant -603
Mordell-Weil group \(\Z/{10}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + 1)y = x^5 + 8x^4 + 4x^3 + 4x^2 + 2x$ (homogenize, simplify)
$y^2 + (x^2z + z^3)y = x^5z + 8x^4z^2 + 4x^3z^3 + 4x^2z^4 + 2xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 + 33x^4 + 16x^3 + 18x^2 + 8x + 1$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 4, 4, 8, 1], R![1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 4, 4, 8, 1]), R([1, 0, 1]));
 
magma: X,pi:= SimplifiedModel(C);
 
sage: X = HyperellipticCurve(R([1, 8, 18, 16, 33, 4]))
 

Invariants

Conductor: \( N \)  =  \(603\) = \( 3^{2} \cdot 67 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(-603\) = \( - 3^{2} \cdot 67 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(-6688\) =  \( - 2^{5} \cdot 11 \cdot 19 \)
\( I_4 \)  = \(1210048\) =  \( 2^{6} \cdot 7 \cdot 37 \cdot 73 \)
\( I_6 \)  = \(-3192824384\) =  \( - 2^{6} \cdot 49887881 \)
\( I_{10} \)  = \(-2469888\) =  \( - 2^{12} \cdot 3^{2} \cdot 67 \)
\( J_2 \)  = \(-836\) =  \( - 2^{2} \cdot 11 \cdot 19 \)
\( J_4 \)  = \(16516\) =  \( 2^{2} \cdot 4129 \)
\( J_6 \)  = \(1263521\) =  \( 7 \cdot 180503 \)
\( J_8 \)  = \(-332270453\) =  \( - 332270453 \)
\( J_{10} \)  = \(-603\) =  \( - 3^{2} \cdot 67 \)
\( g_1 \)  = \(408348897330176/603\)
\( g_2 \)  = \(9649919856896/603\)
\( g_3 \)  = \(-883069772816/603\)

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-1 : -34 : 4)\)

magma: [C![-1,-34,4],C![0,-1,1],C![0,0,1],C![1,0,0]];
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian:

Group structure: \(\Z/{10}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + 8xz + 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2\) \(0\) \(10\)

2-torsion field: 4.2.2412.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 26.91001 \)
Tamagawa product: \( 1 \)
Torsion order:\( 10 \)
Leading coefficient: \( 0.269100 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(3\) \(2\) \(2\) \(1\) \(1 + T^{2}\)
\(67\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 8 T + 67 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).