Minimal equation
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, -2, 2, -2, 1], R![0, 1, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, -2, 2, -2, 1]), R([0, 1, 1]))
$y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$
Invariants
magma: Conductor(LSeries(C)); Factorization($1);
|
|||||
\( N \) | = | \( 578 \) | = | \( 2 \cdot 17^{2} \) | |
magma: Discriminant(C); Factorization(Integers()!$1);
|
|||||
\( \Delta \) | = | \(2312\) | = | \( 2^{3} \cdot 17^{2} \) |
Igusa-Clebsch invariants
magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
Igusa invariants
magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
G2 invariants
magma: G2Invariants(C);
\( I_2 \) | = | \(456\) | = | \( 2^{3} \cdot 3 \cdot 19 \) |
\( I_4 \) | = | \(2820\) | = | \( 2^{2} \cdot 3 \cdot 5 \cdot 47 \) |
\( I_6 \) | = | \(1086216\) | = | \( 2^{3} \cdot 3 \cdot 45259 \) |
\( I_{10} \) | = | \(9469952\) | = | \( 2^{15} \cdot 17^{2} \) |
\( J_2 \) | = | \(57\) | = | \( 3 \cdot 19 \) |
\( J_4 \) | = | \(106\) | = | \( 2 \cdot 53 \) |
\( J_6 \) | = | \(-992\) | = | \( -1 \cdot 2^{5} \cdot 31 \) |
\( J_8 \) | = | \(-16945\) | = | \( -1 \cdot 5 \cdot 3389 \) |
\( J_{10} \) | = | \(2312\) | = | \( 2^{3} \cdot 17^{2} \) |
\( g_1 \) | = | \(601692057/2312\) | ||
\( g_2 \) | = | \(9815229/1156\) | ||
\( g_3 \) | = | \(-402876/289\) |
Automorphism group
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X)\) | \(\simeq\) | \(V_4 \) | (GAP id : [4,2]) | ||
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(V_4 \) | (GAP id : [4,2]) |
Rational points
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
This curve is locally solvable everywhere.
magma: [C![0,0,1],C![1,-2,1],C![1,0,0],C![1,0,1]];
All rational points: (0 : 0 : 1), (1 : -2 : 1), (1 : 0 : 0), (1 : 0 : 1)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
Number of rational Weierstrass points: \(2\)
Invariants of the Jacobian:
Analytic rank: \(0\)
magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
2-Selmer rank: \(1\)
magma: HasSquareSha(Jacobian(C));
Order of Ш*: square
Regulator: 1.0
Real period: 13.910299421844427289400553357
Tamagawa numbers: 3 (p = 2), 1 (p = 17)
magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
Torsion: \(\Z/{12}\Z\)
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $G_{3,3}$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
Elliptic curve 34.a4
Elliptic curve 17.a4
Endomorphisms
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).