Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$ | (homogenize, simplify) |
| $y^2 + (x^2z + xz^2)y = x^5z - 2x^4z^2 + 2x^3z^3 - 2x^2z^4 + xz^5$ | (dehomogenize, simplify) |
| $y^2 = 4x^5 - 7x^4 + 10x^3 - 7x^2 + 4x$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(578\) | \(=\) | \( 2 \cdot 17^{2} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(2312\) | \(=\) | \( 2^{3} \cdot 17^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(228\) | \(=\) | \( 2^{2} \cdot 3 \cdot 19 \) |
| \( I_4 \) | \(=\) | \(705\) | \(=\) | \( 3 \cdot 5 \cdot 47 \) |
| \( I_6 \) | \(=\) | \(135777\) | \(=\) | \( 3 \cdot 45259 \) |
| \( I_{10} \) | \(=\) | \(295936\) | \(=\) | \( 2^{10} \cdot 17^{2} \) |
| \( J_2 \) | \(=\) | \(57\) | \(=\) | \( 3 \cdot 19 \) |
| \( J_4 \) | \(=\) | \(106\) | \(=\) | \( 2 \cdot 53 \) |
| \( J_6 \) | \(=\) | \(-992\) | \(=\) | \( - 2^{5} \cdot 31 \) |
| \( J_8 \) | \(=\) | \(-16945\) | \(=\) | \( - 5 \cdot 3389 \) |
| \( J_{10} \) | \(=\) | \(2312\) | \(=\) | \( 2^{3} \cdot 17^{2} \) |
| \( g_1 \) | \(=\) | \(601692057/2312\) | ||
| \( g_2 \) | \(=\) | \(9815229/1156\) | ||
| \( g_3 \) | \(=\) | \(-402876/289\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{12}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(12\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(12\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 0 : 1) + (1 : 2 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z + xz^2\) | \(0\) | \(12\) |
BSD invariants
| Hasse-Weil conjecture: | verified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(1\) |
| Regulator: | \( 1 \) |
| Real period: | \( 13.91029 \) |
| Tamagawa product: | \( 3 \) |
| Torsion order: | \( 12 \) |
| Leading coefficient: | \( 0.289797 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(1\) | \(3\) | \(3\) | \(-1^*\) | \(( 1 - T )( 1 + T + 2 T^{2} )\) | yes | |
| \(17\) | \(2\) | \(2\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + T )\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.90.3 | yes |
| \(3\) | 3.2160.21 | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 34.a
Elliptic curve isogeny class 17.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).