Results (displaying matches 1-50 of 407) Next
| Label | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
|---|---|---|---|---|---|---|
| 35T1 | $C_{35}$ | 35 | 1 | Yes | $C_5$, $C_7$ | |
| 35T2 | $C_7\times D_5$ | 70 | 1 | Yes | $D_{5}$, $C_7$ | |
| 35T3 | $C_5\times D_7$ | 70 | -1 | Yes | $C_5$, $D_{7}$ | |
| 35T4 | $D_{35}$ | 70 | -1 | Yes | $D_{5}$, $D_{7}$ | |
| 35T5 | $C_5\times C_7:C_3$ | 105 | 1 | Yes | $C_5$, $C_7:C_3$ | |
| 35T6 | $C_7\times F_5$ | 140 | -1 | Yes | $F_5$, $C_7$ | |
| 35T7 | $D_5\times D_7$ | 140 | -1 | Yes | $D_{5}$, $D_{7}$ | |
| 35T8 | $C_7:F_5$ | 140 | 1 | Yes | $F_5$, $D_{7}$ | |
| 35T9 | $D_5\times C_7:C_3$ | 210 | 1 | Yes | $D_{5}$, $C_7:C_3$ | |
| 35T10 | $C_5\times F_7$ | 210 | -1 | Yes | $C_5$, $F_7$ | |
| 35T11 | $D_{35}:C_3$ | 210 | -1 | Yes | $D_{5}$, $F_7$ | |
| 35T12 | $D_7\times F_5$ | 280 | -1 | Yes | $F_5$, $D_{7}$ | |
| 35T13 | $C_7\times A_5$ | 420 | 1 | No | $A_5$, $C_7$ | 42T86 |
| 35T14 | $F_5\times C_7:C_3$ | 420 | -1 | Yes | $F_5$, $C_7:C_3$ | |
| 35T15 | $D_5\times F_7$ | 420 | -1 | Yes | $D_{5}$, $F_7$ | |
| 35T16 | $D_5.F_7$ | 420 | 1 | Yes | $F_5$, $F_7$ | |
| 35T17 | t35n17 | 840 | -1 | No | $S_5$, $C_7$ | 42T138 |
| 35T18 | t35n18 | 840 | -1 | No | $A_5$, $D_{7}$ | 42T139 |
| 35T19 | t35n19 | 840 | 1 | No | $S_5$, $D_{7}$ | 42T140 |
| 35T20 | t35n20 | 840 | -1 | Yes | $F_5$, $F_7$ | |
| 35T21 | t35n21 | 840 | 1 | No | $C_5$, $\GL(3,2)$ | 35T21, 40T885 |
| 35T22 | t35n22 | 1260 | 1 | No | $A_5$, $C_7:C_3$ | 42T197 |
| 35T23 | t35n23 | 1680 | -1 | No | $S_5$, $D_{7}$ | 42T218 |
| 35T24 | t35n24 | 1680 | 1 | No | $D_{5}$, $\GL(3,2)$ | 35T24, 40T1570 |
| 35T25 | t35n25 | 2520 | -1 | No | $S_5$, $C_7:C_3$ | 42T296 |
| 35T26 | t35n26 | 2520 | 1 | No | $S_5$, $F_7$ | 42T298 |
| 35T27 | t35n27 | 2520 | -1 | No | $A_5$, $F_7$ | 42T297 |
| 35T28 | $A_7$ | 2520 | 1 | No | 7T6, 15T47 x 2, 21T33, 42T294, 42T299 | |
| 35T29 | t35n29 | 3360 | -1 | No | $F_5$, $\GL(3,2)$ | 35T29, 40T2719 |
| 35T30 | t35n30 | 5040 | -1 | No | $S_5$, $F_7$ | 42T417 |
| 35T31 | t35n31 | 5040 | 1 | No | 7T7, 14T46, 21T38, 30T565, 42T411, 42T412, 42T413, 42T418 | |
| 35T32 | t35n32 | 10080 | 1 | No | $A_5$, $\GL(3,2)$ | 35T32, 40T5863, 42T552 x 2 |
| 35T33 | t35n33 | 12005 | 1 | Yes | $C_5$ | 35T33 x 79 |
| 35T34 | t35n34 | 12600 | 1 | No | $C_5$, $A_7$ | |
| 35T35 | t35n35 | 20160 | -1 | No | $S_5$, $\GL(3,2)$ | 35T35, 40T11250, 42T723 x 2 |
| 35T36 | $A_8$ | 20160 | 1 | No | 8T49, 15T72 x 2, 28T433 | |
| 35T37 | t35n37 | 24010 | -1 | Yes | $C_5$ | 35T37 x 79 |
| 35T38 | t35n38 | 24010 | 1 | Yes | $D_{5}$ | 35T38 x 7, 35T39 x 8 |
| 35T39 | t35n39 | 24010 | -1 | Yes | $D_{5}$ | 35T38 x 8, 35T39 x 7 |
| 35T40 | t35n40 | 25200 | 1 | No | $D_{5}$, $A_7$ | |
| 35T41 | t35n41 | 25200 | -1 | No | $C_5$, $S_7$ | |
| 35T42 | t35n42 | 25200 | -1 | No | $D_{5}$, $S_7$ | |
| 35T43 | t35n43 | 36015 | 1 | Yes | $C_5$ | 35T43 x 79 |
| 35T44 | t35n44 | 40320 | 1 | No | 8T50, 16T1838, 28T502, 30T1153 | |
| 35T45 | t35n45 | 48020 | -1 | Yes | $D_{5}$ | 35T45 x 15 |
| 35T46 | t35n46 | 48020 | -1 | Yes | $F_5$ | 35T47 |
| 35T47 | t35n47 | 48020 | 1 | Yes | $F_5$ | 35T46 |
| 35T48 | t35n48 | 50400 | -1 | No | $F_5$, $A_7$ | |
| 35T49 | t35n49 | 50400 | -1 | No | $D_{5}$, $S_7$ | |
| 35T50 | t35n50 | 50400 | 1 | No | $F_5$, $S_7$ |
Results are complete for degrees $\leq 23$.