Show commands: Magma
Group invariants
| Abstract group: | $C_5\times D_7$ |
| |
| Order: | $70=2 \cdot 5 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $35$ |
| |
| Transitive number $t$: | $3$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $5$ |
| |
| Generators: | $(1,29,2,30,3,26,4,27,5,28)(6,24,7,25,8,21,9,22,10,23)(11,19,12,20,13,16,14,17,15,18)(31,34,32,35,33)$, $(1,14,2,15,3,11,4,12,5,13)(6,9,7,10,8)(16,34,17,35,18,31,19,32,20,33)(21,29,22,30,23,26,24,27,25,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $10$: $C_{10}$ $14$: $D_{7}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $C_5$
Degree 7: $D_{7}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{15},1^{5}$ | $7$ | $2$ | $15$ | $( 1,31)( 2,32)( 3,33)( 4,34)( 5,35)( 6,26)( 7,27)( 8,28)( 9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)$ |
| 5A1 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)(26,28,30,27,29)(31,33,35,32,34)$ |
| 5A-1 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,34,32,35,33)$ |
| 5A2 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22)(26,30,29,28,27)(31,35,34,33,32)$ |
| 5A-2 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)$ |
| 7A1 | $7^{5}$ | $2$ | $7$ | $30$ | $( 1,11,21,31, 6,16,26)( 2,12,22,32, 7,17,27)( 3,13,23,33, 8,18,28)( 4,14,24,34, 9,19,29)( 5,15,25,35,10,20,30)$ |
| 7A2 | $7^{5}$ | $2$ | $7$ | $30$ | $( 1,21, 6,26,11,31,16)( 2,22, 7,27,12,32,17)( 3,23, 8,28,13,33,18)( 4,24, 9,29,14,34,19)( 5,25,10,30,15,35,20)$ |
| 7A3 | $7^{5}$ | $2$ | $7$ | $30$ | $( 1,31,26,21,16,11, 6)( 2,32,27,22,17,12, 7)( 3,33,28,23,18,13, 8)( 4,34,29,24,19,14, 9)( 5,35,30,25,20,15,10)$ |
| 10A1 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1,32, 3,34, 5,31, 2,33, 4,35)( 6,27, 8,29,10,26, 7,28, 9,30)(11,22,13,24,15,21,12,23,14,25)(16,17,18,19,20)$ |
| 10A-1 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1,20, 4,18, 2,16, 5,19, 3,17)( 6,15, 9,13, 7,11,10,14, 8,12)(21,35,24,33,22,31,25,34,23,32)(26,30,29,28,27)$ |
| 10A3 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1,24, 2,25, 3,21, 4,22, 5,23)( 6,19, 7,20, 8,16, 9,17,10,18)(11,14,12,15,13)(26,34,27,35,28,31,29,32,30,33)$ |
| 10A-3 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1,28, 5,27, 4,26, 3,30, 2,29)( 6,23,10,22, 9,21, 8,25, 7,24)(11,18,15,17,14,16,13,20,12,19)(31,33,35,32,34)$ |
| 35A1 | $35$ | $2$ | $35$ | $34$ | $( 1,32,28,24,20,11, 7, 3,34,30,21,17,13, 9, 5,31,27,23,19,15, 6, 2,33,29,25,16,12, 8, 4,35,26,22,18,14,10)$ |
| 35A-1 | $35$ | $2$ | $35$ | $34$ | $( 1,35,29,23,17,11,10, 4,33,27,21,20,14, 8, 2,31,30,24,18,12, 6, 5,34,28,22,16,15, 9, 3,32,26,25,19,13, 7)$ |
| 35A2 | $35$ | $2$ | $35$ | $34$ | $( 1,28,20, 7,34,21,13, 5,27,19, 6,33,25,12, 4,26,18,10,32,24,11, 3,30,17, 9,31,23,15, 2,29,16, 8,35,22,14)$ |
| 35A-2 | $35$ | $2$ | $35$ | $34$ | $( 1,29,17,10,33,21,14, 2,30,18, 6,34,22,15, 3,26,19, 7,35,23,11, 4,27,20, 8,31,24,12, 5,28,16, 9,32,25,13)$ |
| 35A3 | $35$ | $2$ | $35$ | $34$ | $( 1,24, 7,30,13,31,19, 2,25, 8,26,14,32,20, 3,21, 9,27,15,33,16, 4,22,10,28,11,34,17, 5,23, 6,29,12,35,18)$ |
| 35A-3 | $35$ | $2$ | $35$ | $34$ | $( 1,23,10,27,14,31,18, 5,22, 9,26,13,35,17, 4,21, 8,30,12,34,16, 3,25, 7,29,11,33,20, 2,24, 6,28,15,32,19)$ |
| 35A4 | $35$ | $2$ | $35$ | $34$ | $( 1,20,34,13,27, 6,25, 4,18,32,11,30, 9,23, 2,16,35,14,28, 7,21, 5,19,33,12,26,10,24, 3,17,31,15,29, 8,22)$ |
| 35A-4 | $35$ | $2$ | $35$ | $34$ | $( 1,17,33,14,30, 6,22, 3,19,35,11,27, 8,24, 5,16,32,13,29,10,21, 2,18,34,15,26, 7,23, 4,20,31,12,28, 9,25)$ |
| 35A8 | $35$ | $2$ | $35$ | $34$ | $( 1,34,27,25,18,11, 9, 2,35,28,21,19,12,10, 3,31,29,22,20,13, 6, 4,32,30,23,16,14, 7, 5,33,26,24,17,15, 8)$ |
| 35A-8 | $35$ | $2$ | $35$ | $34$ | $( 1,33,30,22,19,11, 8, 5,32,29,21,18,15, 7, 4,31,28,25,17,14, 6, 3,35,27,24,16,13,10, 2,34,26,23,20,12, 9)$ |
| 35A9 | $35$ | $2$ | $35$ | $34$ | $( 1,30,19, 8,32,21,15, 4,28,17, 6,35,24,13, 2,26,20, 9,33,22,11, 5,29,18, 7,31,25,14, 3,27,16,10,34,23,12)$ |
| 35A-9 | $35$ | $2$ | $35$ | $34$ | $( 1,27,18, 9,35,21,12, 3,29,20, 6,32,23,14, 5,26,17, 8,34,25,11, 2,28,19,10,31,22,13, 4,30,16, 7,33,24,15)$ |
Malle's constant $a(G)$: $1/15$
Character table
| 1A | 2A | 5A1 | 5A-1 | 5A2 | 5A-2 | 7A1 | 7A2 | 7A3 | 10A1 | 10A-1 | 10A3 | 10A-3 | 35A1 | 35A-1 | 35A2 | 35A-2 | 35A3 | 35A-3 | 35A4 | 35A-4 | 35A8 | 35A-8 | 35A9 | 35A-9 | ||
| Size | 1 | 7 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 5A2 | 5A-2 | 5A-1 | 5A1 | 7A2 | 7A3 | 7A1 | 5A1 | 5A-1 | 5A-2 | 5A2 | 35A2 | 35A-2 | 35A4 | 35A-4 | 35A1 | 35A-1 | 35A8 | 35A-8 | 35A-9 | 35A9 | 35A3 | 35A-3 | |
| 5 P | 1A | 2A | 5A-2 | 5A2 | 5A1 | 5A-1 | 7A3 | 7A1 | 7A2 | 10A3 | 10A-3 | 10A-1 | 10A1 | 35A3 | 35A-3 | 35A1 | 35A-1 | 35A9 | 35A-9 | 35A2 | 35A-2 | 35A4 | 35A-4 | 35A-8 | 35A8 | |
| 7 P | 1A | 2A | 1A | 1A | 1A | 1A | 7A2 | 7A3 | 7A1 | 2A | 2A | 2A | 2A | 7A1 | 7A1 | 7A2 | 7A2 | 7A3 | 7A3 | 7A3 | 7A3 | 7A1 | 7A1 | 7A2 | 7A2 | |
| Type | ||||||||||||||||||||||||||
| 70.2.1a | R | |||||||||||||||||||||||||
| 70.2.1b | R | |||||||||||||||||||||||||
| 70.2.1c1 | C | |||||||||||||||||||||||||
| 70.2.1c2 | C | |||||||||||||||||||||||||
| 70.2.1c3 | C | |||||||||||||||||||||||||
| 70.2.1c4 | C | |||||||||||||||||||||||||
| 70.2.1d1 | C | |||||||||||||||||||||||||
| 70.2.1d2 | C | |||||||||||||||||||||||||
| 70.2.1d3 | C | |||||||||||||||||||||||||
| 70.2.1d4 | C | |||||||||||||||||||||||||
| 70.2.2a1 | R | |||||||||||||||||||||||||
| 70.2.2a2 | R | |||||||||||||||||||||||||
| 70.2.2a3 | R | |||||||||||||||||||||||||
| 70.2.2b1 | C | |||||||||||||||||||||||||
| 70.2.2b2 | C | |||||||||||||||||||||||||
| 70.2.2b3 | C | |||||||||||||||||||||||||
| 70.2.2b4 | C | |||||||||||||||||||||||||
| 70.2.2b5 | C | |||||||||||||||||||||||||
| 70.2.2b6 | C | |||||||||||||||||||||||||
| 70.2.2b7 | C | |||||||||||||||||||||||||
| 70.2.2b8 | C | |||||||||||||||||||||||||
| 70.2.2b9 | C | |||||||||||||||||||||||||
| 70.2.2b10 | C | |||||||||||||||||||||||||
| 70.2.2b11 | C | |||||||||||||||||||||||||
| 70.2.2b12 | C |
Regular extensions
Data not computed