Group action invariants
| Degree $n$ : | $35$ | |
| Transitive number $t$ : | $28$ | |
| Group : | $A_7$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33), (2,5,11)(3,7,15)(4,9,10)(6,13,14)(16,21,23)(17,18,22)(19,26,20)(25,30,32)(27,33,34)(28,31,35) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Degree 7: None
Low degree siblings
7T6, 15T47 x 2, 21T33, 42T294, 42T299Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 5, 5, 5 $ | $504$ | $5$ | $( 1,35,19,27, 5)( 2,28,26, 8,34)( 3,32,24,29, 6)( 4,22,10,20,33) ( 7,15,30,16,13)( 9,17,11,31,18)(12,23,14,25,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 2,11)( 3,15)( 4,23)( 5,24)( 6,20)( 7, 8)( 9,16)(12,17)(13,19)(18,22)(25,34) (27,30)(28,35)(29,31)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 2,22,28)( 4,34,20)( 5,17,31)( 6,23,25)( 9,27,19)(10,33,26)(11,18,35) (12,29,24)(13,16,30)(14,21,32)$ |
| $ 6, 6, 6, 6, 3, 3, 2, 2, 1 $ | $210$ | $6$ | $( 2,35,22,11,28,18)( 3,15)( 4, 6,34,23,20,25)( 5,29,17,24,31,12)( 7, 8) ( 9,13,27,16,19,30)(10,26,33)(14,32,21)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1 $ | $630$ | $4$ | $( 2,31,11,29)( 3, 7,15, 8)( 4, 9,23,16)( 5,35,24,28)( 6,30,20,27)(10,21) (12,22,17,18)(13,34,19,25)(14,33)(26,32)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $280$ | $3$ | $( 2,29,17)( 3, 8, 7)( 4,13,32)( 5,28,12)( 6,27,10)( 9,26,25)(11,35,18) (14,34,16)(19,33,23)(20,30,21)(22,24,31)$ |
| $ 7, 7, 7, 7, 7 $ | $360$ | $7$ | $( 1,15,35,30, 9,12, 8)( 2,21, 6,33, 5,14,26)( 3,18,34,31,13,10,24) ( 4,29, 7,11,32,19,22)(16,23,25,27,17,20,28)$ |
| $ 7, 7, 7, 7, 7 $ | $360$ | $7$ | $( 1, 8,12, 9,30,35,15)( 2,26,14, 5,33, 6,21)( 3,24,10,13,31,34,18) ( 4,22,19,32,11, 7,29)(16,28,20,17,27,25,23)$ |
Group invariants
| Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 3 3 2 2 2 . . . .
3 2 1 2 1 . . . 2 .
5 1 . . . . . . . 1
7 1 . . . . 1 1 . .
1a 2a 3a 6a 4a 7a 7b 3b 5a
2P 1a 1a 3a 3a 2a 7a 7b 3b 5a
3P 1a 2a 1a 2a 4a 7b 7a 1a 5a
5P 1a 2a 3a 6a 4a 7b 7a 3b 1a
7P 1a 2a 3a 6a 4a 1a 1a 3b 5a
X.1 1 1 1 1 1 1 1 1 1
X.2 6 2 3 -1 . -1 -1 . 1
X.3 10 -2 1 1 . A /A 1 .
X.4 10 -2 1 1 . /A A 1 .
X.5 14 2 2 2 . . . -1 -1
X.6 14 2 -1 -1 . . . 2 -1
X.7 15 -1 3 -1 -1 1 1 . .
X.8 21 1 -3 1 -1 . . . 1
X.9 35 -1 -1 -1 1 . . -1 .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|