Show commands: Magma
Group invariants
| Abstract group: | $D_7\times A_5$ |
| |
| Order: | $840=2^{3} \cdot 3 \cdot 5 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $35$ |
| |
| Transitive number $t$: | $18$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,8,5,7,3,10)(2,6)(4,9)(11,33)(12,35,14,32,13,31)(15,34)(16,26,20,29,18,28)(17,27)(19,30)(22,24,25)$, $(1,15,23,35,6,17,28,2,11,24,34,9,20,30,4,13,21,33,7,19,27)(3,14,25,31,8,16,29)(5,12,22,32,10,18,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $14$: $D_{7}$ $60$: $A_5$ $120$: $A_5\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $A_5$
Degree 7: $D_{7}$
Low degree siblings
42T139Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{15},1^{5}$ | $7$ | $2$ | $15$ | $( 6,34)( 7,35)( 8,31)( 9,33)(10,32)(11,27)(12,26)(13,28)(14,29)(15,30)(16,25)(17,23)(18,22)(19,21)(20,24)$ |
| 2B | $2^{14},1^{7}$ | $15$ | $2$ | $14$ | $( 2, 4)( 3, 5)( 6, 9)( 8,10)(11,15)(12,14)(16,18)(17,19)(21,23)(22,25)(26,29)(27,30)(31,32)(33,34)$ |
| 2C | $2^{17},1$ | $105$ | $2$ | $17$ | $( 1, 2)( 4, 5)( 6,35)( 7,34)( 8,31)( 9,32)(10,33)(11,26)(12,27)(13,30)(14,29)(15,28)(16,25)(17,22)(18,23)(19,24)(20,21)$ |
| 3A | $3^{7},1^{14}$ | $20$ | $3$ | $14$ | $( 1, 3, 4)( 7, 8, 9)(11,13,14)(16,17,20)(23,24,25)(27,28,29)(31,33,35)$ |
| 5A1 | $5^{7}$ | $12$ | $5$ | $28$ | $( 1, 3, 2, 4, 5)( 6, 9,10, 7, 8)(11,12,13,14,15)(16,19,17,18,20)(21,23,22,24,25)(26,28,29,30,27)(31,34,33,32,35)$ |
| 5A2 | $5^{7}$ | $12$ | $5$ | $28$ | $( 1, 2, 5, 3, 4)( 6,10, 8, 9, 7)(11,13,15,12,14)(16,17,20,19,18)(21,22,25,23,24)(26,29,27,28,30)(31,33,35,34,32)$ |
| 6A | $6^{3},3,2^{6},1^{2}$ | $140$ | $6$ | $23$ | $( 1, 4, 3)( 6,34)( 7,33, 8,35, 9,31)(10,32)(11,29,13,27,14,28)(12,26)(15,30)(16,24,17,25,20,23)(18,22)(19,21)$ |
| 7A1 | $7^{5}$ | $2$ | $7$ | $30$ | $( 1,20,35,13,28, 7,24)( 2,19,34,15,30, 6,21)( 3,16,31,14,29, 8,25)( 4,17,33,11,27, 9,23)( 5,18,32,12,26,10,22)$ |
| 7A2 | $7^{5}$ | $2$ | $7$ | $30$ | $( 1,35,28,24,20,13, 7)( 2,34,30,21,19,15, 6)( 3,31,29,25,16,14, 8)( 4,33,27,23,17,11, 9)( 5,32,26,22,18,12,10)$ |
| 7A3 | $7^{5}$ | $2$ | $7$ | $30$ | $( 1,13,24,35, 7,20,28)( 2,15,21,34, 6,19,30)( 3,14,25,31, 8,16,29)( 4,11,23,33, 9,17,27)( 5,12,22,32,10,18,26)$ |
| 10A1 | $10^{3},5$ | $84$ | $10$ | $31$ | $( 1, 8, 5, 9, 2, 7, 3,10, 4, 6)(11,34,13,31,12,33,15,35,14,32)(16,26,17,30,20,29,18,27,19,28)(21,24,25,22,23)$ |
| 10A3 | $10^{3},5$ | $84$ | $10$ | $31$ | $( 1, 9, 3, 6, 5, 7, 4, 8, 2,10)(11,31,15,32,13,33,14,34,12,35)(16,30,18,28,17,29,19,26,20,27)(21,22,24,23,25)$ |
| 14A1 | $14^{2},7$ | $30$ | $14$ | $32$ | $( 1,35,28,24,20,13, 7)( 2,33,30,23,19,11, 6, 4,34,27,21,17,15, 9)( 3,32,29,22,16,12, 8, 5,31,26,25,18,14,10)$ |
| 14A3 | $14^{2},7$ | $30$ | $14$ | $32$ | $( 1,24, 7,28,13,35,20)( 2,23, 6,27,15,33,19, 4,21, 9,30,11,34,17)( 3,22, 8,26,14,32,16, 5,25,10,29,12,31,18)$ |
| 14A5 | $14^{2},7$ | $30$ | $14$ | $32$ | $( 1,13,24,35, 7,20,28)( 2,11,21,33, 6,17,30, 4,15,23,34, 9,19,27)( 3,12,25,32, 8,18,29, 5,14,22,31,10,16,26)$ |
| 21A1 | $21,7^{2}$ | $40$ | $21$ | $32$ | $( 1,10,15,20,22,30,35, 5, 6,13,18,21,28,32, 2, 7,12,19,24,26,34)( 3, 8,14,16,25,29,31)( 4, 9,11,17,23,27,33)$ |
| 21A2 | $21,7^{2}$ | $40$ | $21$ | $32$ | $( 1,15,22,35, 6,18,28, 2,12,24,34,10,20,30, 5,13,21,32, 7,19,26)( 3,14,25,31, 8,16,29)( 4,11,23,33, 9,17,27)$ |
| 21A4 | $21,7^{2}$ | $40$ | $21$ | $32$ | $( 1,22, 6,28,12,34,20, 5,21, 7,26,15,35,18, 2,24,10,30,13,32,19)( 3,25, 8,29,14,31,16)( 4,23, 9,27,11,33,17)$ |
| 35A1 | $35$ | $24$ | $35$ | $34$ | $( 1,11,25,32, 6,20,27, 3,12,21,35, 9,16,26, 2,13,23,31,10,19,28, 4,14,22,34, 7,17,29, 5,15,24,33, 8,18,30)$ |
| 35A2 | $35$ | $24$ | $35$ | $34$ | $( 1,21, 9,29,12,35,19, 4,25,10,28,15,33,16, 5,24, 6,27,14,32,20, 2,23, 8,26,13,34,17, 3,22, 7,30,11,31,18)$ |
| 35A3 | $35$ | $24$ | $35$ | $34$ | $( 1,34,27,25,18,13, 6, 4,31,26,24,19,11, 8, 5,35,30,23,16,12, 7, 2,33,29,22,20,15, 9, 3,32,28,21,17,14,10)$ |
| 35A4 | $35$ | $24$ | $35$ | $34$ | $( 1,33,29,22,19,13, 9, 3,32,30,24,17,14,10, 2,35,27,25,18,15, 7, 4,31,26,21,20,11, 8, 5,34,28,23,16,12, 6)$ |
| 35A8 | $35$ | $24$ | $35$ | $34$ | $( 1,15,23,31,10,20,30, 4,14,22,35, 6,17,29, 5,13,21,33, 8,18,28, 2,11,25,32, 7,19,27, 3,12,24,34, 9,16,26)$ |
| 35A9 | $35$ | $24$ | $35$ | $34$ | $( 1,23, 8,26,15,35,17, 3,22, 6,28,11,31,18, 2,24, 9,29,12,34,20, 4,25,10,30,13,33,16, 5,21, 7,27,14,32,19)$ |
Malle's constant $a(G)$: $1/14$
Character table
| 1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 7A1 | 7A2 | 7A3 | 10A1 | 10A3 | 14A1 | 14A3 | 14A5 | 21A1 | 21A2 | 21A4 | 35A1 | 35A2 | 35A3 | 35A4 | 35A8 | 35A9 | ||
| Size | 1 | 7 | 15 | 105 | 20 | 12 | 12 | 140 | 2 | 2 | 2 | 84 | 84 | 30 | 30 | 30 | 40 | 40 | 40 | 24 | 24 | 24 | 24 | 24 | 24 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 3A | 7A2 | 7A3 | 7A1 | 5A1 | 5A2 | 7A3 | 7A2 | 7A1 | 21A2 | 21A4 | 21A1 | 35A2 | 35A4 | 35A1 | 35A8 | 35A9 | 35A3 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 2A | 7A3 | 7A1 | 7A2 | 10A3 | 10A1 | 14A3 | 14A5 | 14A1 | 7A1 | 7A2 | 7A3 | 35A3 | 35A1 | 35A9 | 35A2 | 35A4 | 35A8 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 6A | 7A2 | 7A3 | 7A1 | 2A | 2A | 14A5 | 14A1 | 14A3 | 21A2 | 21A4 | 21A1 | 7A1 | 7A2 | 7A3 | 7A3 | 7A1 | 7A2 | |
| 7 P | 1A | 2A | 2B | 2C | 3A | 5A2 | 5A1 | 6A | 1A | 1A | 1A | 10A3 | 10A1 | 2B | 2B | 2B | 3A | 3A | 3A | 5A1 | 5A2 | 5A2 | 5A1 | 5A2 | 5A1 | |
| Type | ||||||||||||||||||||||||||
| 840.137.1a | R | |||||||||||||||||||||||||
| 840.137.1b | R | |||||||||||||||||||||||||
| 840.137.2a1 | R | |||||||||||||||||||||||||
| 840.137.2a2 | R | |||||||||||||||||||||||||
| 840.137.2a3 | R | |||||||||||||||||||||||||
| 840.137.3a1 | R | |||||||||||||||||||||||||
| 840.137.3a2 | R | |||||||||||||||||||||||||
| 840.137.3b1 | R | |||||||||||||||||||||||||
| 840.137.3b2 | R | |||||||||||||||||||||||||
| 840.137.4a | R | |||||||||||||||||||||||||
| 840.137.4b | R | |||||||||||||||||||||||||
| 840.137.5a | R | |||||||||||||||||||||||||
| 840.137.5b | R | |||||||||||||||||||||||||
| 840.137.6a1 | R | |||||||||||||||||||||||||
| 840.137.6a2 | R | |||||||||||||||||||||||||
| 840.137.6a3 | R | |||||||||||||||||||||||||
| 840.137.6a4 | R | |||||||||||||||||||||||||
| 840.137.6a5 | R | |||||||||||||||||||||||||
| 840.137.6a6 | R | |||||||||||||||||||||||||
| 840.137.8a1 | R | |||||||||||||||||||||||||
| 840.137.8a2 | R | |||||||||||||||||||||||||
| 840.137.8a3 | R | |||||||||||||||||||||||||
| 840.137.10a1 | R | |||||||||||||||||||||||||
| 840.137.10a2 | R | |||||||||||||||||||||||||
| 840.137.10a3 | R |
Regular extensions
Data not computed