Group action invariants
| Degree $n$ : | $35$ | |
| Transitive number $t$ : | $31$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33), (2,5)(3,7)(9,10)(13,14)(16,21)(17,22)(19,26)(27,33)(28,31)(30,32) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Degree 7: None
Low degree siblings
7T7, 14T46, 21T38, 30T565, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 7, 7, 7, 7 $ | $720$ | $7$ | $( 1,20,30, 6,10,21,27)( 2,14,33,29, 8,24,19)( 3,11,31,34,12,26,16) ( 4,32,18,28,15,25,35)( 5,17,22,13, 7,23, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 1,34)( 2,17)( 3,23)( 4,31)( 6, 7)( 8,35)(10,19)(11,27)(12,30)(14,16)(15,29) (18,33)(20,28)(24,32)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1 $ | $630$ | $4$ | $( 1,16,34,14)( 2,15,17,29)( 3,18,23,33)( 4,20,31,28)( 5,13)( 6,11, 7,27) ( 8,19,35,10)( 9,26)(12,24,30,32)(21,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $105$ | $2$ | $( 1,15)( 2,14)( 3,11)( 4,31)( 5,21)( 6,33)( 7,18)( 8,35)(10,19)(12,30)(13,22) (16,17)(20,28)(23,27)(24,32)(29,34)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 1,29)( 2,16)( 3,27)( 5,21)( 6,18)( 7,33)(11,23)(13,22)(14,17)(15,34)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1 $ | $210$ | $4$ | $( 1,17,34, 2)( 3, 7,23, 6)( 4,28,31,20)( 5,22)( 8,10,35,19)( 9,26) (11,18,27,33)(12,32,30,24)(13,21)(14,15,16,29)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 1,11, 5)( 3,14, 6)( 4,28,10)( 7,15,13)( 8,20,26)( 9,31,35)(12,25,32) (17,18,27)(21,29,23)(22,33,34)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 2, 1, 1, 1 $ | $420$ | $6$ | $( 1, 4,11,28, 5,10)( 3, 6,14)( 7,12,15,25,13,32)( 8,18,20,27,26,17)( 9,35,31) (16,24)(21,23,29)(22,34,33)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $280$ | $3$ | $( 1,25,21)( 2,30,16)( 3,31,18)( 4,22, 7)( 5,12,23)( 6, 9,17)( 8,20,26) (10,34,13)(11,32,29)(14,35,27)(15,28,33)$ |
| $ 6, 6, 6, 6, 6, 3, 2 $ | $840$ | $6$ | $( 1,14,25,35,21,27)( 2,20,30,26,16, 8)( 3,11,31,32,18,29)( 4,34,22,13, 7,10) ( 5,17,12, 6,23, 9)(15,33,28)(19,24)$ |
| $ 6, 6, 6, 6, 3, 3, 2, 2, 1 $ | $210$ | $6$ | $( 1,15,35,34,29, 8)( 2,14,10,17,16,19)( 3,11,32,23,27,24)( 4,31)( 5,21, 9) ( 6,33,12, 7,18,30)(13,26,22)(20,28)$ |
| $ 5, 5, 5, 5, 5, 5, 5 $ | $504$ | $5$ | $( 1,33,17, 2,27)( 3,29, 7,14,16)( 4, 9,35,26,20)( 5,11,18,22,34) ( 6,13,15,21,23)( 8,31,10,19,28)(12,30,32,24,25)$ |
| $ 10, 10, 5, 5, 5 $ | $504$ | $10$ | $( 1,16,33, 3,17,29, 2, 7,27,14)( 4,26, 9,20,35)( 5,13,11,15,18,21,22,23,34, 6) ( 8,19,31,28,10)(12,24,30,25,32)$ |
| $ 12, 12, 6, 4, 1 $ | $420$ | $12$ | $( 1,16, 8,17,29,10,34,14,35, 2,15,19)( 3,18,24, 7,27,12,23,33,32, 6,11,30) ( 4,20,31,28)( 5,13, 9,22,21,26)$ |
Group invariants
| Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 3 2 4 3 1 1 3 3 2 1 . 4 1
3 2 1 2 1 1 1 . . . 1 1 2 . 1 1
5 1 1 . . . . 1 1 . . . . . . .
7 1 . . . . . . . . . . . 1 . .
1a 2a 3a 6a 2b 6b 5a 10a 4a 4b 12a 3b 7a 2c 6c
2P 1a 1a 3a 3a 1a 3a 5a 5a 2b 2b 6b 3b 7a 1a 3b
3P 1a 2a 1a 2a 2b 2b 5a 10a 4a 4b 4b 1a 7a 2c 2c
5P 1a 2a 3a 6a 2b 6b 1a 2a 4a 4b 12a 3b 7a 2c 6c
7P 1a 2a 3a 6a 2b 6b 5a 10a 4a 4b 12a 3b 1a 2c 6c
11P 1a 2a 3a 6a 2b 6b 5a 10a 4a 4b 12a 3b 7a 2c 6c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 1 -1 -1
X.3 6 4 3 1 2 -1 1 -1 . 2 -1 . -1 . .
X.4 6 -4 3 -1 2 -1 1 1 . -2 1 . -1 . .
X.5 14 4 -1 1 2 -1 -1 -1 . -2 1 2 . . .
X.6 14 -6 2 . 2 2 -1 -1 . . . -1 . -2 1
X.7 14 -4 -1 -1 2 -1 -1 1 . 2 -1 2 . . .
X.8 14 6 2 . 2 2 -1 1 . . . -1 . 2 -1
X.9 15 -5 3 1 -1 -1 . . -1 -1 -1 . 1 3 .
X.10 15 5 3 -1 -1 -1 . . -1 1 1 . 1 -3 .
X.11 20 . 2 . -4 2 . . . . . 2 -1 . .
X.12 21 1 -3 1 1 1 1 1 -1 -1 -1 . . -3 .
X.13 21 -1 -3 -1 1 1 1 -1 -1 1 1 . . 3 .
X.14 35 -5 -1 1 -1 -1 . . 1 1 1 -1 . -1 -1
X.15 35 5 -1 -1 -1 -1 . . 1 -1 -1 -1 . 1 1
|