Show commands: Magma
Group invariants
| Abstract group: | $C_7\times F_5$ |
| |
| Order: | $140=2^{2} \cdot 5 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $35$ |
| |
| Transitive number $t$: | $6$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $7$ |
| |
| Generators: | $(1,9,11,19,21,29,31,4,6,14,16,24,26,34)(2,8,12,18,22,28,32,3,7,13,17,23,27,33)(5,10,15,20,25,30,35)$, $(1,5,3,4)(6,10,8,9)(11,15,13,14)(16,20,18,19)(21,25,23,24)(26,30,28,29)(31,35,33,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $7$: $C_7$ $14$: $C_{14}$ $20$: $F_5$ $28$: $C_{28}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $F_5$
Degree 7: $C_7$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{14},1^{7}$ | $5$ | $2$ | $14$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)$ |
| 4A1 | $4^{7},1^{7}$ | $5$ | $4$ | $21$ | $( 2, 3, 5, 4)( 7, 8,10, 9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29)(32,33,35,34)$ |
| 4A-1 | $4^{7},1^{7}$ | $5$ | $4$ | $21$ | $( 2, 4, 5, 3)( 7, 9,10, 8)(12,14,15,13)(17,19,20,18)(22,24,25,23)(27,29,30,28)(32,34,35,33)$ |
| 5A | $5^{7}$ | $4$ | $5$ | $28$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22)(26,30,29,28,27)(31,35,34,33,32)$ |
| 7A1 | $7^{5}$ | $1$ | $7$ | $30$ | $( 1, 6,11,16,21,26,31)( 2, 7,12,17,22,27,32)( 3, 8,13,18,23,28,33)( 4, 9,14,19,24,29,34)( 5,10,15,20,25,30,35)$ |
| 7A-1 | $7^{5}$ | $1$ | $7$ | $30$ | $( 1,31,26,21,16,11, 6)( 2,32,27,22,17,12, 7)( 3,33,28,23,18,13, 8)( 4,34,29,24,19,14, 9)( 5,35,30,25,20,15,10)$ |
| 7A2 | $7^{5}$ | $1$ | $7$ | $30$ | $( 1,11,21,31, 6,16,26)( 2,12,22,32, 7,17,27)( 3,13,23,33, 8,18,28)( 4,14,24,34, 9,19,29)( 5,15,25,35,10,20,30)$ |
| 7A-2 | $7^{5}$ | $1$ | $7$ | $30$ | $( 1,26,16, 6,31,21,11)( 2,27,17, 7,32,22,12)( 3,28,18, 8,33,23,13)( 4,29,19, 9,34,24,14)( 5,30,20,10,35,25,15)$ |
| 7A3 | $7^{5}$ | $1$ | $7$ | $30$ | $( 1,16,31,11,26, 6,21)( 2,17,32,12,27, 7,22)( 3,18,33,13,28, 8,23)( 4,19,34,14,29, 9,24)( 5,20,35,15,30,10,25)$ |
| 7A-3 | $7^{5}$ | $1$ | $7$ | $30$ | $( 1,21, 6,26,11,31,16)( 2,22, 7,27,12,32,17)( 3,23, 8,28,13,33,18)( 4,24, 9,29,14,34,19)( 5,25,10,30,15,35,20)$ |
| 14A1 | $14^{2},7$ | $5$ | $14$ | $32$ | $( 1,21, 6,26,11,31,16)( 2,25, 7,30,12,35,17, 5,22,10,27,15,32,20)( 3,24, 8,29,13,34,18, 4,23, 9,28,14,33,19)$ |
| 14A-1 | $14^{2},7$ | $5$ | $14$ | $32$ | $( 1,16,31,11,26, 6,21)( 2,20,32,15,27,10,22, 5,17,35,12,30, 7,25)( 3,19,33,14,28, 9,23, 4,18,34,13,29, 8,24)$ |
| 14A3 | $14^{2},7$ | $5$ | $14$ | $32$ | $( 1,26,16, 6,31,21,11)( 2,30,17,10,32,25,12, 5,27,20, 7,35,22,15)( 3,29,18, 9,33,24,13, 4,28,19, 8,34,23,14)$ |
| 14A-3 | $14^{2},7$ | $5$ | $14$ | $32$ | $( 1,11,21,31, 6,16,26)( 2,15,22,35, 7,20,27, 5,12,25,32,10,17,30)( 3,14,23,34, 8,19,28, 4,13,24,33, 9,18,29)$ |
| 14A5 | $14^{2},7$ | $5$ | $14$ | $32$ | $( 1,31,26,21,16,11, 6)( 2,35,27,25,17,15, 7, 5,32,30,22,20,12,10)( 3,34,28,24,18,14, 8, 4,33,29,23,19,13, 9)$ |
| 14A-5 | $14^{2},7$ | $5$ | $14$ | $32$ | $( 1, 6,11,16,21,26,31)( 2,10,12,20,22,30,32, 5, 7,15,17,25,27,35)( 3, 9,13,19,23,29,33, 4, 8,14,18,24,28,34)$ |
| 28A1 | $28,7$ | $5$ | $28$ | $33$ | $( 1,11,21,31, 6,16,26)( 2,14,25,33, 7,19,30, 3,12,24,35, 8,17,29, 5,13,22,34,10,18,27, 4,15,23,32, 9,20,28)$ |
| 28A-1 | $28,7$ | $5$ | $28$ | $33$ | $( 1,30,18, 9,31,25,13, 4,26,20, 8,34,21,15, 3,29,16,10,33,24,11, 5,28,19, 6,35,23,14)( 2,27,17, 7,32,22,12)$ |
| 28A3 | $28,7$ | $5$ | $28$ | $33$ | $( 1,33,27,25,16,13, 7, 5,31,28,22,20,11, 8, 2,35,26,23,17,15, 6, 3,32,30,21,18,12,10)( 4,34,29,24,19,14, 9)$ |
| 28A-3 | $28,7$ | $5$ | $28$ | $33$ | $( 1, 6,11,16,21,26,31)( 2, 9,15,18,22,29,35, 3, 7,14,20,23,27,34, 5, 8,12,19,25,28,32, 4,10,13,17,24,30,33)$ |
| 28A5 | $28,7$ | $5$ | $28$ | $33$ | $( 1,19,33,15,26, 9,23, 5,16,34,13,30, 6,24, 3,20,31,14,28,10,21, 4,18,35,11,29, 8,25)( 2,17,32,12,27, 7,22)$ |
| 28A-5 | $28,7$ | $5$ | $28$ | $33$ | $( 1,21, 6,26,11,31,16)( 2,23,10,29,12,33,20, 4,22, 8,30,14,32,18, 5,24, 7,28,15,34,17, 3,25, 9,27,13,35,19)$ |
| 28A9 | $28,7$ | $5$ | $28$ | $33$ | $( 1,21, 6,26,11,31,16)( 2,24,10,28,12,34,20, 3,22, 9,30,13,32,19, 5,23, 7,29,15,33,17, 4,25, 8,27,14,35,18)$ |
| 28A-9 | $28,7$ | $5$ | $28$ | $33$ | $( 1,19,35,12,26, 9,25, 2,16,34,15,27, 6,24, 5,17,31,14,30, 7,21, 4,20,32,11,29,10,22)( 3,18,33,13,28, 8,23)$ |
| 28A11 | $28,7$ | $5$ | $28$ | $33$ | $( 1, 6,11,16,21,26,31)( 2, 8,15,19,22,28,35, 4, 7,13,20,24,27,33, 5, 9,12,18,25,29,32, 3,10,14,17,23,30,34)$ |
| 28A-11 | $28,7$ | $5$ | $28$ | $33$ | $( 1,33,29,22,16,13, 9, 2,31,28,24,17,11, 8, 4,32,26,23,19,12, 6, 3,34,27,21,18,14, 7)( 5,35,30,25,20,15,10)$ |
| 28A13 | $28,7$ | $5$ | $28$ | $33$ | $( 1,30,17, 8,31,25,12, 3,26,20, 7,33,21,15, 2,28,16,10,32,23,11, 5,27,18, 6,35,22,13)( 4,29,19, 9,34,24,14)$ |
| 28A-13 | $28,7$ | $5$ | $28$ | $33$ | $( 1,11,21,31, 6,16,26)( 2,13,25,34, 7,18,30, 4,12,23,35, 9,17,28, 5,14,22,33,10,19,27, 3,15,24,32, 8,20,29)$ |
| 35A1 | $35$ | $4$ | $35$ | $34$ | $( 1,33,30,22,19,11, 8, 5,32,29,21,18,15, 7, 4,31,28,25,17,14, 6, 3,35,27,24,16,13,10, 2,34,26,23,20,12, 9)$ |
| 35A-1 | $35$ | $4$ | $35$ | $34$ | $( 1, 8,15,17,24,26,33, 5, 7,14,16,23,30,32, 4, 6,13,20,22,29,31, 3,10,12,19,21,28,35, 2, 9,11,18,25,27,34)$ |
| 35A2 | $35$ | $4$ | $35$ | $34$ | $( 1,30,19, 8,32,21,15, 4,28,17, 6,35,24,13, 2,26,20, 9,33,22,11, 5,29,18, 7,31,25,14, 3,27,16,10,34,23,12)$ |
| 35A-2 | $35$ | $4$ | $35$ | $34$ | $( 1,15,24,33, 7,16,30, 4,13,22,31,10,19,28, 2,11,25,34, 8,17,26, 5,14,23,32, 6,20,29, 3,12,21,35, 9,18,27)$ |
| 35A3 | $35$ | $4$ | $35$ | $34$ | $( 1,22, 8,29,15,31,17, 3,24,10,26,12,33,19, 5,21, 7,28,14,35,16, 2,23, 9,30,11,32,18, 4,25, 6,27,13,34,20)$ |
| 35A-3 | $35$ | $4$ | $35$ | $34$ | $( 1,19,32,15,28, 6,24, 2,20,33,11,29, 7,25, 3,16,34,12,30, 8,21, 4,17,35,13,26, 9,22, 5,18,31,14,27,10,23)$ |
Malle's constant $a(G)$: $1/14$
Character table
35 x 35 character table
Regular extensions
Data not computed