Properties

Label 35T2
35T2 1 10 1->10 11 1->11 2 6 2->6 15 2->15 3 7 3->7 14 3->14 4 8 4->8 13 4->13 5 9 5->9 12 5->12 6->15 16 6->16 7->11 20 7->20 8->12 19 8->19 9->13 18 9->18 10->14 17 10->17 11->20 21 11->21 12->16 25 12->25 13->17 24 13->24 14->18 23 14->23 15->19 22 15->22 16->25 26 16->26 17->21 30 17->30 18->22 29 18->29 19->23 28 19->28 20->24 27 20->27 21->30 31 21->31 22->26 35 22->35 23->27 34 23->34 24->28 33 24->33 25->29 32 25->32 26->1 26->35 27->5 27->31 28->4 28->32 29->3 29->33 30->2 30->34 31->5 31->6 32->1 32->10 33->2 33->9 34->3 34->8 35->4 35->7
Degree $35$
Order $70$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_7\times D_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(35, 2);
 

Group invariants

Abstract group:  $C_7\times D_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $70=2 \cdot 5 \cdot 7$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $35$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $7$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,10,14,18,22,26,35,4,8,12,16,25,29,33,2,6,15,19,23,27,31,5,9,13,17,21,30,34,3,7,11,20,24,28,32)$, $(1,11,21,31,6,16,26)(2,15,22,35,7,20,27,5,12,25,32,10,17,30)(3,14,23,34,8,19,28,4,13,24,33,9,18,29)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$7$:  $C_7$
$10$:  $D_{5}$
$14$:  $C_{14}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: $D_{5}$

Degree 7: $C_7$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{35}$ $1$ $1$ $0$ $()$
2A $2^{14},1^{7}$ $5$ $2$ $14$ $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)$
5A1 $5^{7}$ $2$ $5$ $28$ $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,34,32,35,33)$
5A2 $5^{7}$ $2$ $5$ $28$ $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)$
7A1 $7^{5}$ $1$ $7$ $30$ $( 1,16,31,11,26, 6,21)( 2,17,32,12,27, 7,22)( 3,18,33,13,28, 8,23)( 4,19,34,14,29, 9,24)( 5,20,35,15,30,10,25)$
7A-1 $7^{5}$ $1$ $7$ $30$ $( 1,21, 6,26,11,31,16)( 2,22, 7,27,12,32,17)( 3,23, 8,28,13,33,18)( 4,24, 9,29,14,34,19)( 5,25,10,30,15,35,20)$
7A2 $7^{5}$ $1$ $7$ $30$ $( 1,31,26,21,16,11, 6)( 2,32,27,22,17,12, 7)( 3,33,28,23,18,13, 8)( 4,34,29,24,19,14, 9)( 5,35,30,25,20,15,10)$
7A-2 $7^{5}$ $1$ $7$ $30$ $( 1, 6,11,16,21,26,31)( 2, 7,12,17,22,27,32)( 3, 8,13,18,23,28,33)( 4, 9,14,19,24,29,34)( 5,10,15,20,25,30,35)$
7A3 $7^{5}$ $1$ $7$ $30$ $( 1,11,21,31, 6,16,26)( 2,12,22,32, 7,17,27)( 3,13,23,33, 8,18,28)( 4,14,24,34, 9,19,29)( 5,15,25,35,10,20,30)$
7A-3 $7^{5}$ $1$ $7$ $30$ $( 1,26,16, 6,31,21,11)( 2,27,17, 7,32,22,12)( 3,28,18, 8,33,23,13)( 4,29,19, 9,34,24,14)( 5,30,20,10,35,25,15)$
14A1 $14^{2},7$ $5$ $14$ $32$ $( 1,26,16, 6,31,21,11)( 2,30,17,10,32,25,12, 5,27,20, 7,35,22,15)( 3,29,18, 9,33,24,13, 4,28,19, 8,34,23,14)$
14A-1 $14^{2},7$ $5$ $14$ $32$ $( 1,14,21,34, 6,19,26, 4,11,24,31, 9,16,29)( 2,13,22,33, 7,18,27, 3,12,23,32, 8,17,28)( 5,15,25,35,10,20,30)$
14A3 $14^{2},7$ $5$ $14$ $32$ $( 1,10,11,20,21,30,31, 5, 6,15,16,25,26,35)( 2, 9,12,19,22,29,32, 4, 7,14,17,24,27,34)( 3, 8,13,18,23,28,33)$
14A-3 $14^{2},7$ $5$ $14$ $32$ $( 1,31,26,21,16,11, 6)( 2,35,27,25,17,15, 7, 5,32,30,22,20,12,10)( 3,34,28,24,18,14, 8, 4,33,29,23,19,13, 9)$
14A5 $14^{2},7$ $5$ $14$ $32$ $( 1,22, 6,27,11,32,16, 2,21, 7,26,12,31,17)( 3,25, 8,30,13,35,18, 5,23,10,28,15,33,20)( 4,24, 9,29,14,34,19)$
14A-5 $14^{2},7$ $5$ $14$ $32$ $( 1,16,31,11,26, 6,21)( 2,20,32,15,27,10,22, 5,17,35,12,30, 7,25)( 3,19,33,14,28, 9,23, 4,18,34,13,29, 8,24)$
35A1 $35$ $2$ $35$ $34$ $( 1,10,14,18,22,26,35, 4, 8,12,16,25,29,33, 2, 6,15,19,23,27,31, 5, 9,13,17,21,30,34, 3, 7,11,20,24,28,32)$
35A-1 $35$ $2$ $35$ $34$ $( 1,35,29,23,17,11,10, 4,33,27,21,20,14, 8, 2,31,30,24,18,12, 6, 5,34,28,22,16,15, 9, 3,32,26,25,19,13, 7)$
35A2 $35$ $2$ $35$ $34$ $( 1,14,22,35, 8,16,29, 2,15,23,31, 9,17,30, 3,11,24,32,10,18,26, 4,12,25,33, 6,19,27, 5,13,21,34, 7,20,28)$
35A-2 $35$ $2$ $35$ $34$ $( 1,29,17,10,33,21,14, 2,30,18, 6,34,22,15, 3,26,19, 7,35,23,11, 4,27,20, 8,31,24,12, 5,28,16, 9,32,25,13)$
35A3 $35$ $2$ $35$ $34$ $( 1,18,35,12,29, 6,23, 5,17,34,11,28,10,22, 4,16,33,15,27, 9,21, 3,20,32,14,26, 8,25, 2,19,31,13,30, 7,24)$
35A-3 $35$ $2$ $35$ $34$ $( 1,23,10,27,14,31,18, 5,22, 9,26,13,35,17, 4,21, 8,30,12,34,16, 3,25, 7,29,11,33,20, 2,24, 6,28,15,32,19)$
35A4 $35$ $2$ $35$ $34$ $( 1,22, 8,29,15,31,17, 3,24,10,26,12,33,19, 5,21, 7,28,14,35,16, 2,23, 9,30,11,32,18, 4,25, 6,27,13,34,20)$
35A-4 $35$ $2$ $35$ $34$ $( 1,20,34,13,27, 6,25, 4,18,32,11,30, 9,23, 2,16,35,14,28, 7,21, 5,19,33,12,26,10,24, 3,17,31,15,29, 8,22)$
35A8 $35$ $2$ $35$ $34$ $( 1, 8,15,17,24,26,33, 5, 7,14,16,23,30,32, 4, 6,13,20,22,29,31, 3,10,12,19,21,28,35, 2, 9,11,18,25,27,34)$
35A-8 $35$ $2$ $35$ $34$ $( 1,33,30,22,19,11, 8, 5,32,29,21,18,15, 7, 4,31,28,25,17,14, 6, 3,35,27,24,16,13,10, 2,34,26,23,20,12, 9)$
35A9 $35$ $2$ $35$ $34$ $( 1,15,24,33, 7,16,30, 4,13,22,31,10,19,28, 2,11,25,34, 8,17,26, 5,14,23,32, 6,20,29, 3,12,21,35, 9,18,27)$
35A-9 $35$ $2$ $35$ $34$ $( 1,30,19, 8,32,21,15, 4,28,17, 6,35,24,13, 2,26,20, 9,33,22,11, 5,29,18, 7,31,25,14, 3,27,16,10,34,23,12)$

Malle's constant $a(G)$:     $1/14$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 5A1 5A2 7A1 7A-1 7A2 7A-2 7A3 7A-3 14A1 14A-1 14A3 14A-3 14A5 14A-5 35A1 35A-1 35A2 35A-2 35A3 35A-3 35A4 35A-4 35A8 35A-8 35A9 35A-9
Size 1 5 2 2 1 1 1 1 1 1 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2
2 P 1A 1A 5A2 5A1 7A2 7A-2 7A-3 7A3 7A-1 7A1 7A1 7A-1 7A3 7A-3 7A-2 7A2 35A2 35A-2 35A4 35A-4 35A-1 35A1 35A8 35A-8 35A9 35A-9 35A-3 35A3
5 P 1A 2A 5A2 5A1 7A3 7A-3 7A-1 7A1 7A2 7A-2 14A3 14A-3 14A-5 14A5 14A1 14A-1 35A3 35A-3 35A-1 35A1 35A9 35A-9 35A-2 35A2 35A-4 35A4 35A-8 35A8
7 P 1A 2A 1A 1A 7A-2 7A2 7A3 7A-3 7A1 7A-1 14A5 14A-5 14A1 14A-1 14A-3 14A3 7A-3 7A3 7A1 7A-1 7A-2 7A2 7A2 7A-2 7A-3 7A3 7A1 7A-1
Type
70.1.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
70.1.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
70.1.1c1 C 1 1 1 1 ζ73 ζ73 ζ7 ζ71 ζ72 ζ72 ζ73 ζ72 ζ71 ζ7 ζ73 ζ72 ζ7 ζ73 ζ72 ζ73 ζ73 ζ72 ζ72 ζ72 ζ7 ζ71 ζ71 ζ73
70.1.1c2 C 1 1 1 1 ζ73 ζ73 ζ71 ζ7 ζ72 ζ72 ζ73 ζ72 ζ7 ζ71 ζ73 ζ72 ζ71 ζ73 ζ72 ζ73 ζ73 ζ72 ζ72 ζ72 ζ71 ζ7 ζ7 ζ73
70.1.1c3 C 1 1 1 1 ζ72 ζ72 ζ73 ζ73 ζ7 ζ71 ζ72 ζ71 ζ73 ζ73 ζ72 ζ7 ζ73 ζ72 ζ71 ζ72 ζ72 ζ7 ζ7 ζ71 ζ73 ζ73 ζ73 ζ72
70.1.1c4 C 1 1 1 1 ζ72 ζ72 ζ73 ζ73 ζ71 ζ7 ζ72 ζ7 ζ73 ζ73 ζ72 ζ71 ζ73 ζ72 ζ7 ζ72 ζ72 ζ71 ζ71 ζ7 ζ73 ζ73 ζ73 ζ72
70.1.1c5 C 1 1 1 1 ζ71 ζ7 ζ72 ζ72 ζ73 ζ73 ζ71 ζ73 ζ72 ζ72 ζ7 ζ73 ζ72 ζ7 ζ73 ζ71 ζ7 ζ73 ζ73 ζ73 ζ72 ζ72 ζ72 ζ71
70.1.1c6 C 1 1 1 1 ζ7 ζ71 ζ72 ζ72 ζ73 ζ73 ζ7 ζ73 ζ72 ζ72 ζ71 ζ73 ζ72 ζ71 ζ73 ζ7 ζ71 ζ73 ζ73 ζ73 ζ72 ζ72 ζ72 ζ7
70.1.1d1 C 1 1 1 1 ζ73 ζ73 ζ7 ζ71 ζ72 ζ72 ζ73 ζ72 ζ71 ζ7 ζ73 ζ72 ζ7 ζ73 ζ72 ζ73 ζ73 ζ72 ζ72 ζ72 ζ7 ζ71 ζ71 ζ73
70.1.1d2 C 1 1 1 1 ζ73 ζ73 ζ71 ζ7 ζ72 ζ72 ζ73 ζ72 ζ7 ζ71 ζ73 ζ72 ζ71 ζ73 ζ72 ζ73 ζ73 ζ72 ζ72 ζ72 ζ71 ζ7 ζ7 ζ73
70.1.1d3 C 1 1 1 1 ζ72 ζ72 ζ73 ζ73 ζ7 ζ71 ζ72 ζ71 ζ73 ζ73 ζ72 ζ7 ζ73 ζ72 ζ71 ζ72 ζ72 ζ7 ζ7 ζ71 ζ73 ζ73 ζ73 ζ72
70.1.1d4 C 1 1 1 1 ζ72 ζ72 ζ73 ζ73 ζ71 ζ7 ζ72 ζ7 ζ73 ζ73 ζ72 ζ71 ζ73 ζ72 ζ7 ζ72 ζ72 ζ71 ζ71 ζ7 ζ73 ζ73 ζ73 ζ72
70.1.1d5 C 1 1 1 1 ζ71 ζ7 ζ72 ζ72 ζ73 ζ73 ζ71 ζ73 ζ72 ζ72 ζ7 ζ73 ζ72 ζ7 ζ73 ζ71 ζ7 ζ73 ζ73 ζ73 ζ72 ζ72 ζ72 ζ71
70.1.1d6 C 1 1 1 1 ζ7 ζ71 ζ72 ζ72 ζ73 ζ73 ζ7 ζ73 ζ72 ζ72 ζ71 ζ73 ζ72 ζ71 ζ73 ζ7 ζ71 ζ73 ζ73 ζ73 ζ72 ζ72 ζ72 ζ7
70.1.2a1 R 2 0 ζ52+ζ52 ζ51+ζ5 2 2 2 2 2 2 0 0 0 0 0 0 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52
70.1.2a2 R 2 0 ζ51+ζ5 ζ52+ζ52 2 2 2 2 2 2 0 0 0 0 0 0 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5
70.1.2b1 C 2 0 ζ3514+ζ3514 ζ357+ζ357 2ζ3515 2ζ3515 2ζ355 2ζ355 2ζ3510 2ζ3510 0 0 0 0 0 0 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ3513ζ358ζ3515 ζ353+ζ3517 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3513+ζ358 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ354+ζ3511 ζ353ζ3510ζ3517 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3512+ζ352 ζ359+ζ3516 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517
70.1.2b2 C 2 0 ζ3514+ζ3514 ζ357+ζ357 2ζ3515 2ζ3515 2ζ355 2ζ355 2ζ3510 2ζ3510 0 0 0 0 0 0 ζ359+ζ3516 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ3513+ζ358 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ353+ζ3517 ζ353ζ3510ζ3517 ζ354+ζ3511 ζ3512+ζ352 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ3513ζ358ζ3515
70.1.2b3 C 2 0 ζ3514+ζ3514 ζ357+ζ357 2ζ3510 2ζ3510 2ζ3515 2ζ3515 2ζ355 2ζ355 0 0 0 0 0 0 ζ3513ζ358ζ3515 ζ353ζ3510ζ3517 ζ3512+ζ352 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ353+ζ3517 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ359+ζ3516 ζ3513+ζ358 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ354+ζ3511
70.1.2b4 C 2 0 ζ3514+ζ3514 ζ357+ζ357 2ζ3510 2ζ3510 2ζ3515 2ζ3515 2ζ355 2ζ355 0 0 0 0 0 0 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ354+ζ3511 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ353+ζ3517 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ3512+ζ352 ζ359+ζ3516 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3513+ζ358 ζ3513ζ358ζ3515 ζ353ζ3510ζ3517
70.1.2b5 C 2 0 ζ3514+ζ3514 ζ357+ζ357 2ζ355 2ζ355 2ζ3510 2ζ3510 2ζ3515 2ζ3515 0 0 0 0 0 0 ζ354+ζ3511 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ3513+ζ358 ζ3512+ζ352 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ3513ζ358ζ3515 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ353+ζ3517 ζ353ζ3510ζ3517 ζ359+ζ3516
70.1.2b6 C 2 0 ζ3514+ζ3514 ζ357+ζ357 2ζ355 2ζ355 2ζ3510 2ζ3510 2ζ3515 2ζ3515 0 0 0 0 0 0 ζ353ζ3510ζ3517 ζ359+ζ3516 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3512+ζ352 ζ3513+ζ358 ζ3513ζ358ζ3515 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ353+ζ3517 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ354+ζ3511 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513
70.1.2b7 C 2 0 ζ357+ζ357 ζ3514+ζ3514 2ζ3515 2ζ3515 2ζ355 2ζ355 2ζ3510 2ζ3510 0 0 0 0 0 0 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3513+ζ358 ζ353ζ3510ζ3517 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ3513ζ358ζ3515 ζ354+ζ3511 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ353+ζ3517 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ359+ζ3516 ζ3512+ζ352 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517
70.1.2b8 C 2 0 ζ357+ζ357 ζ3514+ζ3514 2ζ3515 2ζ3515 2ζ355 2ζ355 2ζ3510 2ζ3510 0 0 0 0 0 0 ζ3512+ζ352 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ354+ζ3511 ζ3513ζ358ζ3515 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ353ζ3510ζ3517 ζ353+ζ3517 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ359+ζ3516 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3513+ζ358
70.1.2b9 C 2 0 ζ357+ζ357 ζ3514+ζ3514 2ζ3510 2ζ3510 2ζ3515 2ζ3515 2ζ355 2ζ355 0 0 0 0 0 0 ζ3513+ζ358 ζ353+ζ3517 ζ359+ζ3516 ζ354+ζ3511 ζ353ζ3510ζ3517 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3512+ζ352 ζ3513ζ358ζ3515 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516
70.1.2b10 C 2 0 ζ357+ζ357 ζ3514+ζ3514 2ζ3510 2ζ3510 2ζ3515 2ζ3515 2ζ355 2ζ355 0 0 0 0 0 0 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ353ζ3510ζ3517 ζ354+ζ3511 ζ359+ζ3516 ζ3512+ζ352 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ3513ζ358ζ3515 ζ3513+ζ358 ζ353+ζ3517
70.1.2b11 C 2 0 ζ357+ζ357 ζ3514+ζ3514 2ζ355 2ζ355 2ζ3510 2ζ3510 2ζ3515 2ζ3515 0 0 0 0 0 0 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513 ζ3513ζ358ζ3515 ζ359+ζ3516 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ3513+ζ358 ζ354+ζ3511 ζ353ζ3510ζ3517 ζ353+ζ3517 ζ3512+ζ352
70.1.2b12 C 2 0 ζ357+ζ357 ζ3514+ζ3514 2ζ355 2ζ355 2ζ3510 2ζ3510 2ζ3515 2ζ3515 0 0 0 0 0 0 ζ353+ζ3517 ζ3512+ζ352 ζ3517+ζ3513ζ3512+1ζ354+ζ355+ζ357ζ359+ζ3510ζ3511+ζ3512ζ3513+ζ3515ζ3516+ζ3517 ζ3517+ζ3512+ζ357+ζ353ζ355+ζ358ζ3512+ζ3513 ζ359+ζ3516 ζ3513ζ358ζ3515 ζ3513+ζ358 ζ3517ζ3513+ζ3512+ζ3510+ζ355+ζ354ζ357+ζ359+ζ3511ζ3512+ζ3513+ζ3516ζ3517 ζ353ζ3510ζ3517 ζ354+ζ3511 ζ3512ζ3510ζ355ζ352ζ354ζ359ζ3511ζ3516 ζ3517ζ3512ζ357ζ353ζ358+ζ3512ζ3513

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed