Show commands: Magma
Group invariants
Abstract group: | $C_{35}:C_6$ |
| |
Order: | $210=2 \cdot 3 \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $35$ |
| |
Transitive number $t$: | $9$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,35,14,3,32,11,5,34,13,2,31,15,4,33,12)(6,20,24,8,17,21,10,19,23,7,16,25,9,18,22)(26,30,29,28,27)$, $(1,12,21,32,6,17,26,2,11,22,31,7,16,27)(3,15,23,35,8,20,28,5,13,25,33,10,18,30)(4,14,24,34,9,19,29)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $10$: $D_{5}$ $21$: $C_7:C_3$ $30$: $D_5\times C_3$ $42$: $(C_7:C_3) \times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $D_{5}$
Degree 7: $C_7:C_3$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14},1^{7}$ | $5$ | $2$ | $14$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)$ |
3A1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,21,26)( 2,22,27)( 3,23,28)( 4,24,29)( 5,25,30)( 6,31,11)( 7,32,12)( 8,33,13)( 9,34,14)(10,35,15)$ |
3A-1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,26,21)( 2,27,22)( 3,28,23)( 4,29,24)( 5,30,25)( 6,11,31)( 7,12,32)( 8,13,33)( 9,14,34)(10,15,35)$ |
5A1 | $5^{7}$ | $2$ | $5$ | $28$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)$ |
5A2 | $5^{7}$ | $2$ | $5$ | $28$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)(26,28,30,27,29)(31,33,35,32,34)$ |
6A1 | $6^{4},3^{2},2^{2},1$ | $35$ | $6$ | $26$ | $( 1,16,11)( 2,20,12, 5,17,15)( 3,19,13, 4,18,14)( 6,26,31)( 7,30,32,10,27,35)( 8,29,33, 9,28,34)(22,25)(23,24)$ |
6A-1 | $6^{4},3^{2},2^{2},1$ | $35$ | $6$ | $26$ | $( 1,11,16)( 2,15,17, 5,12,20)( 3,14,18, 4,13,19)( 6,31,26)( 7,35,27,10,32,30)( 8,34,28, 9,33,29)(22,25)(23,24)$ |
7A1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,21, 6,26,11,31,16)( 2,22, 7,27,12,32,17)( 3,23, 8,28,13,33,18)( 4,24, 9,29,14,34,19)( 5,25,10,30,15,35,20)$ |
7A-1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,16,31,11,26, 6,21)( 2,17,32,12,27, 7,22)( 3,18,33,13,28, 8,23)( 4,19,34,14,29, 9,24)( 5,20,35,15,30,10,25)$ |
14A1 | $14^{2},7$ | $15$ | $14$ | $32$ | $( 1,27,16, 7,31,22,11, 2,26,17, 6,32,21,12)( 3,30,18,10,33,25,13, 5,28,20, 8,35,23,15)( 4,29,19, 9,34,24,14)$ |
14A-1 | $14^{2},7$ | $15$ | $14$ | $32$ | $( 1,12,21,32, 6,17,26, 2,11,22,31, 7,16,27)( 3,15,23,35, 8,20,28, 5,13,25,33,10,18,30)( 4,14,24,34, 9,19,29)$ |
15A1 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,28,25, 2,29,21, 3,30,22, 4,26,23, 5,27,24)( 6,13,35, 7,14,31, 8,15,32, 9,11,33,10,12,34)(16,18,20,17,19)$ |
15A-1 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,28,10, 2,29, 6, 3,30, 7, 4,26, 8, 5,27, 9)(11,13,15,12,14)(16,23,35,17,24,31,18,25,32,19,21,33,20,22,34)$ |
15A2 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,20,14, 3,17,11, 5,19,13, 2,16,15, 4,18,12)( 6,30,34, 8,27,31,10,29,33, 7,26,35, 9,28,32)(21,25,24,23,22)$ |
15A-2 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,20, 9, 3,17, 6, 5,19, 8, 2,16,10, 4,18, 7)(11,25,29,13,22,26,15,24,28,12,21,30,14,23,27)(31,35,34,33,32)$ |
35A1 | $35$ | $6$ | $35$ | $34$ | $( 1,28,20, 7,34,21,13, 5,27,19, 6,33,25,12, 4,26,18,10,32,24,11, 3,30,17, 9,31,23,15, 2,29,16, 8,35,22,14)$ |
35A-1 | $35$ | $6$ | $35$ | $34$ | $( 1,13,25,32, 9,16,28, 5,12,24,31, 8,20,27, 4,11,23,35, 7,19,26, 3,15,22,34, 6,18,30, 2,14,21,33,10,17,29)$ |
35A2 | $35$ | $6$ | $35$ | $34$ | $( 1,20,34,13,27, 6,25, 4,18,32,11,30, 9,23, 2,16,35,14,28, 7,21, 5,19,33,12,26,10,24, 3,17,31,15,29, 8,22)$ |
35A-2 | $35$ | $6$ | $35$ | $34$ | $( 1, 7,13,19,25,26,32, 3, 9,15,16,22,28,34, 5, 6,12,18,24,30,31, 2, 8,14,20,21,27,33, 4,10,11,17,23,29,35)$ |
Malle's constant $a(G)$: $1/14$
Character table
1A | 2A | 3A1 | 3A-1 | 5A1 | 5A2 | 6A1 | 6A-1 | 7A1 | 7A-1 | 14A1 | 14A-1 | 15A1 | 15A-1 | 15A2 | 15A-2 | 35A1 | 35A-1 | 35A2 | 35A-2 | ||
Size | 1 | 5 | 7 | 7 | 2 | 2 | 35 | 35 | 3 | 3 | 15 | 15 | 14 | 14 | 14 | 14 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 5A2 | 5A1 | 3A-1 | 3A1 | 7A1 | 7A-1 | 7A-1 | 7A1 | 15A2 | 15A-2 | 15A1 | 15A-1 | 35A2 | 35A-2 | 35A1 | 35A-1 | |
3 P | 1A | 2A | 1A | 1A | 5A2 | 5A1 | 2A | 2A | 7A-1 | 7A1 | 14A-1 | 14A1 | 5A1 | 5A1 | 5A2 | 5A2 | 35A-2 | 35A2 | 35A-1 | 35A1 | |
5 P | 1A | 2A | 3A-1 | 3A1 | 1A | 1A | 6A-1 | 6A1 | 7A-1 | 7A1 | 14A-1 | 14A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 7A1 | 7A-1 | 7A1 | 7A-1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 5A2 | 5A1 | 6A1 | 6A-1 | 1A | 1A | 2A | 2A | 15A-2 | 15A2 | 15A-1 | 15A1 | 5A1 | 5A1 | 5A2 | 5A2 | |
Type | |||||||||||||||||||||
210.2.1a | R | ||||||||||||||||||||
210.2.1b | R | ||||||||||||||||||||
210.2.1c1 | C | ||||||||||||||||||||
210.2.1c2 | C | ||||||||||||||||||||
210.2.1d1 | C | ||||||||||||||||||||
210.2.1d2 | C | ||||||||||||||||||||
210.2.2a1 | R | ||||||||||||||||||||
210.2.2a2 | R | ||||||||||||||||||||
210.2.2b1 | C | ||||||||||||||||||||
210.2.2b2 | C | ||||||||||||||||||||
210.2.2b3 | C | ||||||||||||||||||||
210.2.2b4 | C | ||||||||||||||||||||
210.2.3a1 | C | ||||||||||||||||||||
210.2.3a2 | C | ||||||||||||||||||||
210.2.3b1 | C | ||||||||||||||||||||
210.2.3b2 | C | ||||||||||||||||||||
210.2.6a1 | C | ||||||||||||||||||||
210.2.6a2 | C | ||||||||||||||||||||
210.2.6a3 | C | ||||||||||||||||||||
210.2.6a4 | C |
Regular extensions
Data not computed