Label 35T37
Degree $35$
Order $24010$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $35$
Transitive number $t$:  $37$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,18,31,11,26)(2,17,29,10,24)(3,19,32,12,25)(4,21,33,14,22)(5,16,35,9,27)(6,20,34,13,23)(7,15,30,8,28), (1,28,9,34,16,3,25,10,29,17)(2,23,11,32,18)(4,27,8,33,15,7,26,13,35,20)(5,22,14,30,21,6,24,12,31,19)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$5$:  $C_5$
$10$:  $C_{10}$

Resolvents shown for degrees $\leq 47$


Degree 5: $C_5$

Degree 7: None

Low degree siblings

35T37 x 79

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 250 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $24010=2 \cdot 5 \cdot 7^{4}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.