Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
2.113.abe_px |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 413 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$84$ |
$[84, 12696, 1442898, 163027300, 18423882144, 2081946893622, 235260528230448, 26584442005453444, 3004041937984268274, 339456738955547310936]$ |
$9763$ |
$[9763, 162095089, 2081949323116, 26581171112324361, 339448086087350322043, 4334512984023170571949456, 55347520804808468728941005947, 706732554710555273891700425162889, 9024267965168278309504236280820666284, 115230877634784168493238296568725888574449]$ |
$20$ |
$20$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{38})\) |
$C_2^2$ |
simple |
2.113.abe_py |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 414 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12698, 1442988, 163029246, 18423910044, 2081947224602, 235260532526628, 26584442071904638, 3004041938984767044, 339456738968312857178]$ |
$9764$ |
$[9764, 162121456, 2082079353476, 26581488398569216, 339448600120434117764, 4334513673106743226861936, 55347521815530169554400519076, 706732556477123204266127862067200, 9024267968173818575404886990274733604, 115230877639117519191814817300843742595696]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.3833200.2 |
$D_{4}$ |
simple |
2.113.abe_pz |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 21 x + 113 x^{2} )( 1 - 9 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12700, 1443078, 163031188, 18423937644, 2081947544350, 235260536540988, 26584442132934628, 3004041939896746854, 339456738979727783500]$ |
$9765$ |
$[9765, 162147825, 2082209386320, 26581805033765625, 339449108626439675325, 4334514338805834155212800, 55347522759950732944833692205, 706732558099571449765525152515625, 9024267970913444173122756442069646160, 115230877642992392856779946340756164170625]$ |
$128$ |
$128$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-371}) \) |
$C_2$, $C_2$ |
1.113.av $\times$ 1.113.aj |
2.113.abe_qa |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 416 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12702, 1443168, 163033126, 18423964944, 2081947852878, 235260540274788, 26584442188609918, 3004041940722564804, 339456738989855519022]$ |
$9766$ |
$[9766, 162174196, 2082339421654, 26582121017923536, 339449611605373869286, 4334514981145429318918036, 55347523638366587667209161174, 706732559579667982116703385318400, 9024267973394235929886752657252242486, 115230877646430320930360548582586025440596]$ |
$48$ |
$48$ |
$2$ |
$2$ |
$1$ |
4.0.105134400.1 |
$D_{4}$ |
simple |
2.113.abe_qb |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 417 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12704, 1443258, 163035060, 18423991944, 2081948150198, 235260543729288, 26584442238996964, 3004041941464571514, 339456738998759052464]$ |
$9767$ |
$[9767, 162200569, 2082469459484, 26582436351052921, 339450109057243624007, 4334515600150514725411216, 55347524451074162512490997623, 706732560919179497001013640699049, 9024267975623255206735380916837268636, 115230877649452685358035623485906572928649]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.122979904.1 |
$D_{4}$ |
simple |
2.113.abe_qc |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 418 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12706, 1443348, 163036990, 18424018644, 2081948436322, 235260546905748, 26584442284162174, 3004041942125111124, 339456739006500932386]$ |
$9768$ |
$[9768, 162226944, 2082599499816, 26582751033163776, 339450600982055913768, 4334516195846076427942656, 55347525198369886295977609512, 706732562119871414054577141448704, 9024267977607543898516846342773407784, 115230877652080718670005952438855943367424]$ |
$160$ |
$160$ |
$2$ |
$2$ |
$1$ |
4.0.135036.2 |
$D_{4}$ |
simple |
2.113.abe_qd |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 419 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12708, 1443438, 163038916, 18424045044, 2081948711262, 235260549805428, 26584442324171908, 3004041942706521294, 339456739013143267428]$ |
$9769$ |
$[9769, 162253321, 2082729542656, 26583065064266121, 339451087379817762889, 4334516768257100525879296, 55347525880550187857642738281, 706732563183507876868518233558025, 9024267979354124433889158821915689984, 115230877654335504062663747439954278917321]$ |
$56$ |
$56$ |
$2$ |
$2$ |
$1$ |
4.0.590400.4 |
$D_{4}$ |
simple |
2.113.abe_qe |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 420 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12710, 1443528, 163040838, 18424071144, 2081948975030, 235260552429588, 26584442359092478, 3004041943211133204, 339456739018747726550]$ |
$9770$ |
$[9770, 162279700, 2082859588010, 26583378444370000, 339451568250536245850, 4334517317408573165005300, 55347526497911496062478557690, 706732564111851752989200213120000, 9024267980869999775320240299286879130, 115230877656237975480062301124256707592500]$ |
$60$ |
$60$ |
$2$ |
$2$ |
$1$ |
4.0.161694016.1 |
$D_{4}$ |
simple |
2.113.abe_qf |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 421 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12712, 1443618, 163042756, 18424096944, 2081949227638, 235260554779488, 26584442388990148, 3004041943641271554, 339456739023375539272]$ |
$9771$ |
$[9771, 162306081, 2082989635884, 26583691173485481, 339452043594218487411, 4334517843325480537823376, 55347527050750239800840879379, 706732564906664633918464016337225, 9024267982162153419088034467061755116, 115230877657808917695385638159744806222721]$ |
$56$ |
$56$ |
$2$ |
$2$ |
$1$ |
4.0.3470400.6 |
$D_{4}$ |
simple |
2.113.abe_qg |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 422 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12714, 1443708, 163044670, 18424122444, 2081949469098, 235260556856388, 26584442413931134, 3004041943999254564, 339456739027087495914]$ |
$9772$ |
$[9772, 162332464, 2083119686284, 26584003251622656, 339452513410871662732, 4334518346032808883856816, 55347527539362847988796470188, 706732565569706835113869789507584, 9024267983237549395280618875859893036, 115230877659068966392418168040130029813424]$ |
$48$ |
$48$ |
$2$ |
$2$ |
$1$ |
4.0.11020464.2 |
$D_{4}$ |
simple |
2.113.abe_qh |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 423 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12716, 1443798, 163046580, 18424147644, 2081949699422, 235260558661548, 26584442433981604, 3004041944287393974, 339456739029943947836]$ |
$9773$ |
$[9773, 162358849, 2083249739216, 26584314678791641, 339452977700502997493, 4334518825555544489952256, 55347527964045749568472486277, 706732566102737395988941355902569, 9024267984103132267796319495084587984, 115230877660038608247014339300514976353649]$ |
$42$ |
$42$ |
$2$ |
$2$ |
$1$ |
4.0.11290384.1 |
$D_{4}$ |
simple |
2.113.abe_qi |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 424 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12718, 1443888, 163048486, 18424172544, 2081949918622, 235260560196228, 26584442449207678, 3004041944507995044, 339456739032004807678]$ |
$9774$ |
$[9774, 162385236, 2083379794686, 26584625455002576, 339453436463119768014, 4334519281918673690583156, 55347528325095373508408029086, 706732566507514079913413596492800, 9024267984765827134343827749197983614, 115230877660738181008568295182632263590196]$ |
$144$ |
$144$ |
$2$ |
$2$ |
$1$ |
4.0.2260800.1 |
$D_{4}$ |
simple |
2.113.abe_qj |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 425 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12720, 1443978, 163050388, 18424197144, 2081950126710, 235260561461688, 26584442459675428, 3004041944663356554, 339456739033329549600]$ |
$9775$ |
$[9775, 162411625, 2083509852700, 26584935580265625, 339453889698729301375, 4334519715147182868154000, 55347528622808148803907828175, 706732566785793374213482761515625, 9024267985232539626442320056975235100, 115230877661187873581483530776656227665625]$ |
$84$ |
$84$ |
$2$ |
$2$ |
$1$ |
4.0.183882816.1 |
$D_{4}$ |
simple |
2.113.abe_qk |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 113 x^{2} )( 1 - 10 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12722, 1444068, 163052286, 18424221444, 2081950323698, 235260562459188, 26584442465450878, 3004041944755770804, 339456739033977209522]$ |
$9776$ |
$[9776, 162438016, 2083639913264, 26585245054590976, 339454337407338975536, 4334520125266058453305216, 55347528857480504477398055984, 706732566939330490172059729920000, 9024267985510155909421579900933672496, 115230877661407726106642551666859616436096]$ |
$100$ |
$100$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-22}) \) |
$C_2$, $C_2$ |
1.113.au $\times$ 1.113.ak |
2.113.abe_ql |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 427 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12724, 1444158, 163054180, 18424245444, 2081950509598, 235260563189988, 26584442466600004, 3004041944787523614, 339456739034006385364]$ |
$9777$ |
$[9777, 162464409, 2083769976384, 26585553877988841, 339454779588956219457, 4334520512300286925218816, 55347529029408869578784279553, 706732566969879363029026233764169, 9024267985605542682422122454286428736, 115230877661417630042876534108665946371449]$ |
$66$ |
$66$ |
$2$ |
$2$ |
$1$ |
4.0.11294784.1 |
$D_{4}$ |
simple |
2.113.abe_qm |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 428 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12726, 1444248, 163056070, 18424269144, 2081950684422, 235260563655348, 26584442463188734, 3004041944760894324, 339456739033475237286]$ |
$9778$ |
$[9778, 162490804, 2083900042066, 26585862050469456, 339455216243588513218, 4334520876274854811924756, 55347529138889673185811554242, 706732566879192651981494064681984, 9024267985525547178395321792923857634, 115230877661237328248434986764928224823124]$ |
$40$ |
$40$ |
$2$ |
$2$ |
$1$ |
4.0.177033024.1 |
$D_{4}$ |
simple |
2.113.abe_qn |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 429 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12728, 1444338, 163057956, 18424292544, 2081950848182, 235260563856528, 26584442455282948, 3004041944678155794, 339456739032441487928]$ |
$9779$ |
$[9779, 162517201, 2084030110316, 26586169572043081, 339455647371243388139, 4334521217214748690608016, 55347529186219344404426664491, 706732566669021740184067279574025, 9024267985276997164103540720080291244, 115230877660886415062455414029546312754321]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.172110400.1 |
$D_{4}$ |
simple |
2.113.abe_qo |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 430 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12730, 1444428, 163059838, 18424315644, 2081951000890, 235260563794788, 26584442442948478, 3004041944541574404, 339456739030962422650]$ |
$9780$ |
$[9780, 162543600, 2084160181140, 26586476442720000, 339456072971928426900, 4334521535144955187916400, 55347529171694312369142516660, 706732566341116734749107422720000, 9024267984866700940120263231498272820, 115230877660384336386432980966818320390000]$ |
$276$ |
$276$ |
$2$ |
$2$ |
$1$ |
4.0.10379376.2 |
$D_{4}$ |
simple |
2.113.abe_qp |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 431 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12732, 1444518, 163061716, 18424338444, 2081951142558, 235260563471388, 26584442426251108, 3004041944353410054, 339456739029094889772]$ |
$9781$ |
$[9781, 162570001, 2084290254544, 26586782662510521, 339456493045651263661, 4334521830090460980269056, 55347529095611006243404688989, 706732565897226466747001781549225, 9024267984301447340830229649057351376, 115230877659750389765690179895206093290721]$ |
$64$ |
$64$ |
$2$ |
$2$ |
$1$ |
4.0.621225.1 |
$D_{4}$ |
simple |
2.113.abe_qq |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 432 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12734, 1444608, 163063590, 18424360944, 2081951273198, 235260562887588, 26584442405256574, 3004041944115916164, 339456739026895300814]$ |
$9782$ |
$[9782, 162596404, 2084420330534, 26587088231424976, 339456907592419584182, 4334522102076252794165716, 55347528958265855219960143718, 706732565339098491206434693346304, 9024267983588005734429574450989836486, 115230877659003724470846498644481062712724]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.151123264.1 |
$D_{4}$ |
simple |
2.113.abe_qr |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 433 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12736, 1444698, 163065460, 18424383144, 2081951392822, 235260562044648, 26584442380030564, 3004041943831339674, 339456739024419630736]$ |
$9783$ |
$[9783, 162622809, 2084550409116, 26587393149473721, 339457316612241125943, 4334522351127317406496656, 55347528759955288521228106407, 706732564668479087114661920209449, 9024267982733126022925966826961587484, 115230877658163341579288090515504505415849]$ |
$115$ |
$115$ |
$2$ |
$2$ |
$1$ |
4.0.1758784.2 |
$D_{4}$ |
simple |
2.113.abe_qs |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 434 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12738, 1444788, 163067326, 18424405044, 2081951501442, 235260560943828, 26584442350638718, 3004041943501921044, 339456739021723418178]$ |
$9784$ |
$[9784, 162649216, 2084680490296, 26587697416667136, 339457720105123678264, 4334522577268641644853376, 55347528500975735399673117496, 706732563887113257417788109619200, 9024267981743538642138753986451949624, 115230877657248094056637445972185587949696]$ |
$112$ |
$112$ |
$2$ |
$2$ |
$1$ |
4.0.2080800.1 |
$D_{4}$ |
simple |
2.113.abe_qt |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 19 x + 113 x^{2} )( 1 - 11 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12740, 1444878, 163069188, 18424426644, 2081951599070, 235260559586388, 26584442317146628, 3004041943129894254, 339456739018861765700]$ |
$9785$ |
$[9785, 162675625, 2084810574080, 26588001033015625, 339458118071075082425, 4334522780525212387840000, 55347528181623625138180261145, 706732562996744729021047358015625, 9024267980625954561699107249023351040, 115230877656276686838223066095451462515625]$ |
$72$ |
$72$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \), \(\Q(\sqrt{-331}) \) |
$C_2$, $C_2$ |
1.113.at $\times$ 1.113.al |
2.113.abe_qu |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 436 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12742, 1444968, 163071046, 18424447944, 2081951685718, 235260557973588, 26584442279619838, 3004041942717486804, 339456739015889340022]$ |
$9786$ |
$[9786, 162702036, 2084940660474, 26588303998529616, 339458510510103231786, 4334522960922016565385396, 55347527802195387050432576394, 706732561999115952789086894822400, 9024267979387065285050170945227838506, 115230877655267676910549137829356139396596]$ |
$68$ |
$68$ |
$2$ |
$2$ |
$1$ |
4.0.113198400.1 |
$D_{4}$ |
simple |
2.113.abe_qv |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 437 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12744, 1445058, 163072900, 18424468944, 2081951761398, 235260556106688, 26584442238123844, 3004041942266919714, 339456739012860372264]$ |
$9787$ |
$[9787, 162728449, 2085070749484, 26588606313219561, 339458897422216071907, 4334523118484041159056016, 55347527362987450481290655683, 706732560895968103546253904396489, 9024267978033542849447214157054957036, 115230877654239473392765211049748888297249]$ |
$40$ |
$40$ |
$2$ |
$2$ |
$1$ |
4.0.102763584.1 |
$D_{4}$ |
simple |
2.113.abe_qw |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 438 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12746, 1445148, 163074750, 18424489644, 2081951826122, 235260553986948, 26584442192724094, 3004041941780407524, 339456739009828658186]$ |
$9788$ |
$[9788, 162754864, 2085200841116, 26588907977095936, 339459278807421600668, 4334523253236273202369456, 55347526864296244807174435772, 706732559689041080076885503422464, 9024267976572039825957785326982868284, 115230877653210337618135877486218521371824]$ |
$54$ |
$54$ |
$2$ |
$2$ |
$1$ |
4.0.5762224.1 |
$D_{4}$ |
simple |
2.113.abe_qx |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 439 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12748, 1445238, 163076596, 18424510044, 2081951879902, 235260551615628, 26584442143485988, 3004041941260158294, 339456739006847558428]$ |
$9789$ |
$[9789, 162781281, 2085330935376, 26589208990169241, 339459654665727868389, 4334523365203699781108736, 55347526306418199436447186101, 706732558380073505125601891310825, 9024267975009189319461869764852455504, 115230877652198383215510451528327087866321]$ |
$72$ |
$72$ |
$2$ |
$2$ |
$1$ |
4.0.5101200.1 |
$D_{4}$ |
simple |
2.113.abe_qy |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 440 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12750, 1445328, 163078438, 18424530144, 2081951922750, 235260548993988, 26584442090474878, 3004041940708373604, 339456739003969998750]$ |
$9790$ |
$[9790, 162807700, 2085461032270, 26589509352450000, 339460024997142977950, 4334523454411308033637300, 55347525689649743809801699630, 706732556970802725397602691200000, 9024267973351604968652050081942378510, 115230877651221576190792652947445267792500]$ |
$120$ |
$120$ |
$2$ |
$2$ |
$1$ |
4.0.71159616.1 |
$D_{4}$ |
simple |
2.113.abe_qz |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 441 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12752, 1445418, 163080276, 18424549944, 2081951954678, 235260546123288, 26584442033756068, 3004041940127248554, 339456739001248470272]$ |
$9791$ |
$[9791, 162834121, 2085591131804, 26589809063948761, 339460389801675084911, 4334523520884085151214736, 55347525014287307400648691199, 706732555462964811558966499202025, 9024267971605880946033669581781620636, 115230877650297735008410291565802093513721]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.60942400.1 |
$D_{4}$ |
simple |
2.113.abe_ra |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 18 x + 113 x^{2} )( 1 - 12 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12754, 1445508, 163082110, 18424569444, 2081951975698, 235260543004788, 26584441973394814, 3004041939518971764, 339456738998735029714]$ |
$9792$ |
$[9792, 162860544, 2085721233984, 26590108124676096, 339460749079332397632, 4334523564647018378313216, 55347524280627319715507408448, 706732553858294558236953659572224, 9024267969778591957924998637395011136, 115230877649444530672784953904663557185024]$ |
$184$ |
$184$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-77}) \) |
$C_2$, $C_2$ |
1.113.as $\times$ 1.113.am |
2.113.abe_rb |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 443 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12756, 1445598, 163083940, 18424588644, 2081951985822, 235260539639748, 26584441909456324, 3004041938885725374, 339456738996481299636]$ |
$9793$ |
$[9793, 162886969, 2085851338816, 26590406534642601, 339461102830123177393, 4334523585725095012934656, 55347523488966210294398460337, 706732552158525484020312283523529, 9024267967876293244457404084836510784, 115230877648679486809801691843858182281049]$ |
$48$ |
$48$ |
$2$ |
$2$ |
$1$ |
4.0.2608704.1 |
$D_{4}$ |
simple |
2.113.abe_rc |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 444 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12758, 1445688, 163085766, 18424607544, 2081951985062, 235260536029428, 26584441842005758, 3004041938229685044, 339456738994538468678]$ |
$9794$ |
$[9794, 162913396, 2085981446306, 26590704293858896, 339461451054055738514, 4334523584143302406928596, 55347522639600408711238868306, 706732550365389831459587529446400, 9024267965905520579575521663024715634, 115230877648019979748278713325172752594196]$ |
$40$ |
$40$ |
$2$ |
$2$ |
$1$ |
4.0.33006400.1 |
$D_{4}$ |
simple |
2.113.abe_rd |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 445 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12760, 1445778, 163087588, 18424626144, 2081951973430, 235260532175088, 26584441771108228, 3004041937553019954, 339456738992957291800]$ |
$9795$ |
$[9795, 162939825, 2086111556460, 26591001402335625, 339461793751138448475, 4334523559926627966310800, 55347521732826344574239345115, 706732548480618567067434162335625, 9024267963872790271037431530055063980, 115230877647483238601437075132448105720625]$ |
$80$ |
$80$ |
$2$ |
$2$ |
$1$ |
4.0.25022016.1 |
$D_{4}$ |
simple |
2.113.abe_re |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 446 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12762, 1445868, 163089406, 18424644444, 2081951950938, 235260528077988, 26584441696828798, 3004041936857892804, 339456738991788090522]$ |
$9796$ |
$[9796, 162966256, 2086241669284, 26591297860083456, 339462130921379728036, 4334523513100059151582576, 55347520768940447526303806404, 706732546505941381318932410265600, 9024267961784599160414836886323624516, 115230877647086345348370377781513213802096]$ |
$48$ |
$48$ |
$2$ |
$2$ |
$1$ |
4.0.1119600.1 |
$D_{4}$ |
simple |
2.113.abe_rf |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 17 x + 113 x^{2} )( 1 - 13 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12764, 1445958, 163091220, 18424662444, 2081951917598, 235260523739388, 26584441619232484, 3004041936146459814, 339456738991080753164]$ |
$9797$ |
$[9797, 162992689, 2086371784784, 26591593667113081, 339462462564788051357, 4334523443688583478050816, 55347519748239147245431120013, 706732544443086688651907135796009, 9024267959647424623093245734958099536, 115230877646846234915514462553405695786049]$ |
$18$ |
$18$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \), \(\Q(\sqrt{-283}) \) |
$C_2$, $C_2$ |
1.113.ar $\times$ 1.113.an |
2.113.abe_rg |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 448 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12766, 1446048, 163093030, 18424680144, 2081951873422, 235260519160548, 26584441538384254, 3004041935420870724, 339456738990884735086]$ |
$9798$ |
$[9798, 163019124, 2086501902966, 26591888823435216, 339462788681371946118, 4334523351717188516148756, 55347518671018873445119098102, 706732542293781627467250340230144, 9024267957467724568272155810212795734, 115230877646779695258117110704638436333524]$ |
$72$ |
$72$ |
$2$ |
$2$ |
$1$ |
4.0.6836544.4 |
$D_{4}$ |
simple |
2.113.abe_rh |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 449 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$84$ |
$[84, 12768, 1446138, 163094836, 18424697544, 2081951818422, 235260514342728, 26584441454349028, 3004041934683268794, 339456738991249058928]$ |
$9799$ |
$[9799, 163045561, 2086632023836, 26592183329060601, 339463109271139993639, 4334523237210861891757456, 55347517537576055874770737111, 706732540059752060129247018688425, 9024267955251937438965242704645796764, 115230877646903367441707744888585130373321]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.3124800.5 |
$D_{4}$ |
simple |
2.113.abe_ri |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 16 x + 113 x^{2} )( 1 - 14 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$84$ |
$[84, 12770, 1446228, 163096638, 18424714644, 2081951752610, 235260509287188, 26584441367191678, 3004041933935790804, 339456738992222314850]$ |
$9800$ |
$[9800, 163072000, 2086762147400, 26592477184000000, 339463424334100829000, 4334523100194591286528000, 55347516348207124320102710600, 706732537742722572965904384000000, 9024267953006482212000551226058416200, 115230877647233745723567132822372332800000]$ |
$36$ |
$36$ |
$16$ |
$12$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.113.aq $\times$ 1.113.ao |
2.113.abe_rj |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 15 x + 113 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$84$ |
$[84, 12772, 1446318, 163098436, 18424731444, 2081951675998, 235260503995188, 26584441276977028, 3004041933180567054, 339456738993852660772]$ |
$9801$ |
$[9801, 163098441, 2086892273664, 26592770388264201, 339463733870263141161, 4334522940693364438204416, 55347515103208508603556120009, 706732535344416476269284477455625, 9024267950737758398020690015339216896, 115230877647787177634197093233981973571721]$ |
$60$ |
$60$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-227}) \) |
$C_2$ |
1.113.ap 2 |
2.113.abd_pb |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 391 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12711, 1442695, 163020587, 18423831650, 2081947225599, 235260534988235, 26584441957862803, 3004041935731251865, 339456738930643613886]$ |
$9855$ |
$[9855, 162282285, 2081656601415, 26580076708796325, 339447155780668316400, 4334513675182276791274245, 55347522394648813220701701135, 706732553445384621017559799513125, 9024267958400122532707744965711460095, 115230877626330440704416203408007263980800]$ |
$13$ |
$13$ |
$2$ |
$2$ |
$1$ |
4.0.18247877.1 |
$D_{4}$ |
simple |
2.113.abd_pc |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 392 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12713, 1442782, 163022385, 18423856445, 2081947526174, 235260539286557, 26584442027510305, 3004041936747520702, 339456738943032349913]$ |
$9856$ |
$[9856, 162308608, 2081782269952, 26580369856251904, 339447612606075842176, 4334514300964411616690176, 55347523405874495682828608128, 706732555296924615195369850871808, 9024267961453036739782183482900023296, 115230877630535880636009388135968398668288]$ |
$30$ |
$30$ |
$2$ |
$2$ |
$1$ |
4.0.877212.1 |
$D_{4}$ |
simple |
2.113.abd_pd |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 393 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12715, 1442869, 163024179, 18423880950, 2081947816315, 235260543333565, 26584442092469859, 3004041937687519597, 339456738954222001950]$ |
$9857$ |
$[9857, 162334933, 2081907940841, 26580662352499589, 339448064088573100432, 4334514905023446124425925, 55347524357975898821656370873, 706732557023838126792638686720709, 9024267964276832842609433240923428929, 115230877634334283426633672211280467120128]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.90654941.1 |
$D_{4}$ |
simple |
2.113.abd_pe |
$2$ |
$\F_{113}$ |
$113$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 21 x + 113 x^{2} )( 1 - 8 x + 113 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12717, 1442956, 163025969, 18423905165, 2081948096034, 235260547130477, 26584442152803361, 3004041938553356908, 339456738964267227357]$ |
$9858$ |
$[9858, 162361260, 2082033614088, 26580954197548800, 339448510228166100498, 4334515487384365671816960, 55347525251239570233071856594, 706732558627770626384334661401600, 9024267966877844437018979201091289992, 115230877637744202885473496678223485864300]$ |
$28$ |
$28$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-97}) \) |
$C_2$, $C_2$ |
1.113.av $\times$ 1.113.ai |
2.113.abd_pf |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 395 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12719, 1443043, 163027755, 18423929090, 2081948365343, 235260550678511, 26584442208572659, 3004041939347134729, 339456738973222273214]$ |
$9859$ |
$[9859, 162387589, 2082159289699, 26581245391408981, 339448951024860898864, 4334516048072155656277021, 55347526085952057531969583219, 706732560110366308497320018054469, 9024267969262386301522106358144180331, 115230877640784053549402270834528452513024]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.149982525.2 |
$D_{4}$ |
simple |
2.113.abd_pg |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 396 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12721, 1443130, 163029537, 18423952725, 2081948624254, 235260553978885, 26584442259839553, 3004041940070948890, 339456738981140976561]$ |
$9860$ |
$[9860, 162413920, 2082284967680, 26581535934089600, 339449386478663599300, 4334516587111801515581440, 55347526862399908352551369220, 706732561473268091610536623040000, 9024267971436754397311972168794218240, 115230877643472110764452006216634427989600]$ |
$36$ |
$36$ |
$2$ |
$2$ |
$1$ |
4.0.43754648.1 |
$D_{4}$ |
simple |
2.113.abd_ph |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 397 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12723, 1443217, 163031315, 18423976070, 2081948872779, 235260557032817, 26584442306665795, 3004041940726888957, 339456738988076764638]$ |
$9861$ |
$[9861, 162440253, 2082410648037, 26581825825600149, 339449816589580352976, 4334517104528288728151181, 55347527580869670348627969213, 706732562718117618155194208990373, 9024267973407225868263680891992498221, 115230877645826510767282951548065238847488]$ |
$46$ |
$46$ |
$2$ |
$2$ |
$1$ |
4.0.197118053.1 |
$D_{4}$ |
simple |
2.113.abd_pi |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 398 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12725, 1443304, 163033089, 18423999125, 2081949110930, 235260559841525, 26584442349113089, 3004041941317038232, 339456738994082655125]$ |
$9862$ |
$[9862, 162466588, 2082536330776, 26582115065950144, 339450241357617358582, 4334517600346602813337600, 55347528241647891193922700358, 706732563846555254514961142394624, 9024267975180059040934359864271130584, 115230877647865250766653228671993817875228]$ |
$48$ |
$48$ |
$2$ |
$2$ |
$1$ |
4.0.2671516.1 |
$D_{4}$ |
simple |
2.113.abd_pj |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 399 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12727, 1443391, 163034859, 18424021890, 2081949338719, 235260562406227, 26584442387243091, 3004041941843473753, 339456738999211256382]$ |
$9863$ |
$[9863, 162492925, 2082662015903, 26582403655149125, 339450660782780862448, 4334518074591729331707925, 55347528845021118582377064599, 706732564860220091026157731665125, 9024267976761493424563237733650986167, 115230877649606189024888469489301828384000]$ |
$50$ |
$50$ |
$2$ |
$2$ |
$1$ |
4.0.232955093.1 |
$D_{4}$ |
simple |
2.113.abd_pk |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 400 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12729, 1443478, 163036625, 18424044365, 2081949556158, 235260564728141, 26584442421117409, 3004041942308266294, 339456739003514767689]$ |
$9864$ |
$[9864, 162519264, 2082787703424, 26582691593206656, 339451074865077158664, 4334518527288653885331456, 55347529391275900228458371784, 706732565760749941977952091672064, 9024267978157749711071724675749943936, 115230877651067044939351453923683279968224]$ |
$54$ |
$54$ |
$2$ |
$2$ |
$1$ |
4.0.61729400.2 |
$D_{4}$ |
simple |
2.113.abd_pl |
$2$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 401 x^{2} - 3277 x^{3} + 12769 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$85$ |
$[85, 12731, 1443565, 163038387, 18424066550, 2081949763259, 235260566808485, 26584442450797603, 3004041942713480365, 339456739007044979486]$ |
$9865$ |
$[9865, 162545605, 2082913393345, 26582978880132325, 339451483604512589200, 4334518958462362118066485, 55347529880698783867469368705, 706732566549781345612558580773125, 9024267979375029775063494615870502585, 115230877652265399123911748935583344742400]$ |
$38$ |
$38$ |
$2$ |
$2$ |
$1$ |
4.0.258393357.1 |
$D_{4}$ |
simple |