Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x + 439 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.165098416172$, $\pm0.317438811485$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5101200.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 72 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9789$ | $162781281$ | $2085330935376$ | $26589208990169241$ | $339459654665727868389$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $12748$ | $1445238$ | $163076596$ | $18424510044$ | $2081951879902$ | $235260551615628$ | $26584442143485988$ | $3004041941260158294$ | $339456739006847558428$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=56 x^6+47 x^5+72 x^4+34 x^3+7 x^2+12 x+41$
- $y^2=3 x^6+53 x^5+72 x^4+58 x^3+60 x^2+43 x+51$
- $y^2=86 x^6+71 x^5+18 x^4+102 x^3+41 x^2+22 x+77$
- $y^2=47 x^6+33 x^5+30 x^4+44 x^3+111 x^2+46 x+38$
- $y^2=79 x^6+37 x^5+97 x^4+95 x^3+28 x^2+69 x+74$
- $y^2=9 x^6+58 x^5+3 x^4+8 x^3+100 x^2+51 x+63$
- $y^2=58 x^6+57 x^5+57 x^4+90 x^3+27 x^2+93 x+59$
- $y^2=101 x^6+47 x^5+27 x^4+96 x^3+100 x^2+49 x+94$
- $y^2=74 x^6+97 x^5+23 x^4+59 x^3+14 x^2+44 x+62$
- $y^2=103 x^6+82 x^5+106 x^4+85 x^3+91 x^2+14 x+11$
- $y^2=80 x^6+59 x^5+62 x^4+30 x^3+52 x^2+36 x+84$
- $y^2=44 x^6+63 x^5+86 x^4+37 x^3+102 x^2+34 x+20$
- $y^2=26 x^6+78 x^5+100 x^4+24 x^3+59 x+97$
- $y^2=18 x^6+75 x^5+9 x^4+2 x^3+60 x^2+52 x+45$
- $y^2=67 x^6+111 x^5+62 x^4+x^3+14 x^2+40 x+33$
- $y^2=18 x^6+87 x^5+38 x^4+6 x^3+63 x^2+58 x+106$
- $y^2=62 x^6+29 x^5+11 x^4+83 x^3+95 x^2+35 x+100$
- $y^2=40 x^6+84 x^5+22 x^4+51 x^3+68 x^2+44 x+40$
- $y^2=106 x^6+3 x^5+36 x^4+71 x^3+103 x^2+70 x+13$
- $y^2=110 x^6+110 x^5+20 x^4+34 x^3+47 x^2+8 x+73$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.5101200.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.be_qx | $2$ | (not in LMFDB) |