Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x + 430 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.127302793111$, $\pm0.336998805860$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.10379376.2 |
Galois group: | $D_{4}$ |
Jacobians: | $276$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9780$ | $162543600$ | $2084160181140$ | $26586476442720000$ | $339456072971928426900$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $12730$ | $1444428$ | $163059838$ | $18424315644$ | $2081951000890$ | $235260563794788$ | $26584442442948478$ | $3004041944541574404$ | $339456739030962422650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 276 curves (of which all are hyperelliptic):
- $y^2=65 x^6+53 x^5+41 x^4+30 x^3+80 x^2+103 x+33$
- $y^2=10 x^6+34 x^5+86 x^4+61 x^3+10 x^2+57 x+16$
- $y^2=43 x^6+95 x^5+100 x^4+102 x^3+99 x^2+57 x+86$
- $y^2=75 x^6+8 x^5+50 x^4+12 x^3+95 x^2+6 x+96$
- $y^2=111 x^6+80 x^5+51 x^4+26 x^3+71 x^2+73 x+54$
- $y^2=71 x^6+47 x^5+54 x^4+95 x^3+84 x^2+57 x+68$
- $y^2=28 x^6+47 x^5+89 x^4+111 x^3+56 x^2+27 x+44$
- $y^2=107 x^6+49 x^5+4 x^4+5 x^3+46 x^2+26 x+89$
- $y^2=67 x^6+2 x^5+41 x^4+103 x^3+6 x^2+104 x+84$
- $y^2=107 x^6+89 x^5+99 x^4+31 x^3+105 x^2+49 x+54$
- $y^2=97 x^6+9 x^5+6 x^4+60 x^3+27 x^2+86 x+92$
- $y^2=50 x^6+110 x^5+15 x^4+22 x^3+103 x^2+46 x+39$
- $y^2=11 x^6+92 x^5+25 x^4+85 x^3+102 x^2+61 x+108$
- $y^2=55 x^6+29 x^5+76 x^4+43 x^3+86 x^2+45 x+90$
- $y^2=16 x^6+96 x^5+102 x^4+10 x^3+53 x^2+74 x+83$
- $y^2=42 x^6+37 x^5+91 x^4+57 x^3+8 x^2+106 x+65$
- $y^2=96 x^6+82 x^5+64 x^4+76 x^3+30 x^2+77 x+90$
- $y^2=89 x^6+48 x^5+15 x^4+15 x^3+86 x^2+5 x+33$
- $y^2=32 x^6+45 x^5+90 x^4+70 x^3+78 x^2+46 x+103$
- $y^2=55 x^6+9 x^5+73 x^4+23 x^3+44 x^2+24 x+111$
- and 256 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.10379376.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.be_qo | $2$ | (not in LMFDB) |