Properties

Label 2.113.abe_qg
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 30 x + 422 x^{2} - 3390 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0916467577024$, $\pm0.350623691245$
Angle rank:  $2$ (numerical)
Number field:  4.0.11020464.2
Galois group:  $D_{4}$
Jacobians:  $48$
Isomorphism classes:  64

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9772$ $162332464$ $2083119686284$ $26584003251622656$ $339452513410871662732$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $84$ $12714$ $1443708$ $163044670$ $18424122444$ $2081949469098$ $235260556856388$ $26584442413931134$ $3004041943999254564$ $339456739027087495914$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.11020464.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.be_qg$2$(not in LMFDB)