Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x + 422 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0916467577024$, $\pm0.350623691245$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.11020464.2 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
Isomorphism classes: | 64 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9772$ | $162332464$ | $2083119686284$ | $26584003251622656$ | $339452513410871662732$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $12714$ | $1443708$ | $163044670$ | $18424122444$ | $2081949469098$ | $235260556856388$ | $26584442413931134$ | $3004041943999254564$ | $339456739027087495914$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=33 x^6+7 x^5+49 x^4+53 x^3+12 x^2+24 x+38$
- $y^2=99 x^6+111 x^5+85 x^4+15 x^3+x^2+35 x+51$
- $y^2=107 x^6+20 x^5+72 x^4+17 x^3+93 x^2+85 x+97$
- $y^2=108 x^6+78 x^5+3 x^4+46 x^3+110 x^2+100 x+5$
- $y^2=90 x^6+2 x^5+44 x^4+105 x^3+77 x^2+30 x+33$
- $y^2=46 x^6+23 x^5+12 x^4+108 x^3+51 x^2+98 x+87$
- $y^2=107 x^6+9 x^5+17 x^4+106 x^3+17 x^2+78 x+15$
- $y^2=110 x^6+19 x^5+96 x^4+52 x^3+44 x^2+9 x+9$
- $y^2=53 x^6+60 x^5+3 x^4+38 x^3+17 x^2+105 x+71$
- $y^2=86 x^6+82 x^5+14 x^4+3 x^3+111 x+107$
- $y^2=43 x^6+80 x^5+52 x^4+97 x^3+18 x^2+5$
- $y^2=25 x^6+4 x^5+21 x^4+33 x^3+106 x^2+66 x+95$
- $y^2=50 x^6+64 x^5+54 x^4+74 x^3+3 x^2+48 x+11$
- $y^2=58 x^6+41 x^5+55 x^4+24 x^3+44 x^2+41 x+54$
- $y^2=64 x^5+39 x^4+58 x^3+110 x^2+112 x+71$
- $y^2=54 x^6+86 x^5+96 x^4+11 x^3+5 x^2+65 x+42$
- $y^2=44 x^6+94 x^5+17 x^4+80 x^3+61 x^2+65 x+80$
- $y^2=12 x^6+53 x^5+77 x^4+25 x^3+16 x^2+79 x+28$
- $y^2=65 x^6+19 x^5+3 x^4+33 x^3+90 x^2+74 x+95$
- $y^2=76 x^6+62 x^5+44 x^4+15 x^3+31 x^2+46 x+36$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.11020464.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.be_qg | $2$ | (not in LMFDB) |