Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x + 443 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.183387034006$, $\pm0.305972628890$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2608704.1 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9793$ | $162886969$ | $2085851338816$ | $26590406534642601$ | $339461102830123177393$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $12756$ | $1445598$ | $163083940$ | $18424588644$ | $2081951985822$ | $235260539639748$ | $26584441909456324$ | $3004041938885725374$ | $339456738996481299636$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=68 x^6+x^5+83 x^4+54 x^3+x^2+112 x+43$
- $y^2=64 x^6+45 x^5+18 x^4+49 x^3+45 x^2+33 x+38$
- $y^2=34 x^6+33 x^5+5 x^4+86 x^3+93 x^2+77 x+104$
- $y^2=2 x^6+101 x^5+39 x^4+85 x^3+78 x^2+93 x+28$
- $y^2=44 x^6+77 x^5+111 x^4+96 x^3+72 x^2+38 x+18$
- $y^2=54 x^6+45 x^5+31 x^4+52 x^3+8 x^2+15 x+70$
- $y^2=93 x^6+30 x^5+6 x^4+64 x^3+84 x^2+51 x+40$
- $y^2=39 x^6+109 x^5+7 x^4+95 x^3+9 x^2+22 x+19$
- $y^2=28 x^6+5 x^5+56 x^4+9 x^3+73 x^2+99 x+31$
- $y^2=74 x^6+61 x^5+28 x^4+51 x^3+54 x^2+12 x+67$
- $y^2=37 x^6+41 x^5+90 x^4+86 x^3+34 x^2+46 x+45$
- $y^2=43 x^6+12 x^5+70 x^4+57 x^3+61 x^2+2 x+28$
- $y^2=34 x^6+96 x^5+7 x^4+7 x^3+51 x^2+7 x+92$
- $y^2=65 x^6+17 x^5+11 x^4+17 x^3+59 x^2+84$
- $y^2=100 x^6+74 x^5+71 x^4+86 x^3+106 x^2+32 x+29$
- $y^2=55 x^6+108 x^5+97 x^4+24 x^3+66 x^2+44 x+68$
- $y^2=62 x^6+84 x^5+30 x^4+30 x^3+45 x^2+30 x+103$
- $y^2=29 x^6+22 x^5+94 x^4+25 x^3+60 x^2+62 x+82$
- $y^2=103 x^6+99 x^5+99 x^3+40 x^2+28 x+23$
- $y^2=6 x^6+30 x^5+38 x^4+28 x^3+25 x^2+75 x+103$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.2608704.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.be_rb | $2$ | (not in LMFDB) |