Properties

Label 2.113.abe_qk
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 20 x + 113 x^{2} )( 1 - 10 x + 113 x^{2} )$
  $1 - 30 x + 426 x^{2} - 3390 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.110150159186$, $\pm0.344123913111$
Angle rank:  $2$ (numerical)
Jacobians:  $100$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9776$ $162438016$ $2083639913264$ $26585245054590976$ $339454337407338975536$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $84$ $12722$ $1444068$ $163052286$ $18424221444$ $2081950323698$ $235260562459188$ $26584442465450878$ $3004041944755770804$ $339456739033977209522$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 100 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.au $\times$ 1.113.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.ak_ba$2$(not in LMFDB)
2.113.k_ba$2$(not in LMFDB)
2.113.be_qk$2$(not in LMFDB)