Invariants
| Base field: | $\F_{113}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 30 x + 441 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
| Frobenius angles: | $\pm0.173997398161$, $\pm0.312029122546$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.60942400.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
| Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9791$ | $162834121$ | $2085591131804$ | $26589809063948761$ | $339460389801675084911$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $12752$ | $1445418$ | $163080276$ | $18424549944$ | $2081951954678$ | $235260546123288$ | $26584442033756068$ | $3004041940127248554$ | $339456739001248470272$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=85 x^6+108 x^5+57 x^4+70 x^3+14 x^2+86 x+3$
- $y^2=32 x^6+9 x^5+106 x^4+31 x^3+77 x^2+109 x+17$
- $y^2=59 x^6+11 x^5+87 x^4+86 x^3+14 x^2+86 x+4$
- $y^2=75 x^6+109 x^5+62 x^4+94 x^3+14 x^2+35 x+33$
- $y^2=19 x^6+91 x^5+39 x^4+35 x^3+100 x^2+95 x+96$
- $y^2=42 x^6+64 x^5+26 x^4+30 x^3+104 x^2+44 x+96$
- $y^2=41 x^6+30 x^5+56 x^4+94 x^3+72 x^2+75 x+46$
- $y^2=111 x^6+48 x^5+x^4+27 x^3+44 x^2+10 x+65$
- $y^2=77 x^6+57 x^5+76 x^4+74 x^3+13 x^2+110 x+101$
- $y^2=64 x^6+44 x^5+85 x^4+83 x^3+60 x^2+86 x+2$
- $y^2=70 x^6+18 x^5+43 x^4+83 x^3+107 x^2+77 x+17$
- $y^2=80 x^6+92 x^5+47 x^4+79 x^3+45 x^2+93 x+103$
- $y^2=96 x^6+54 x^5+4 x^4+12 x^3+70 x^2+70 x+74$
- $y^2=94 x^6+103 x^5+69 x^4+42 x^3+31 x^2+32 x+27$
- $y^2=84 x^6+50 x^5+27 x^4+75 x^3+9 x^2+43 x+106$
- $y^2=88 x^6+51 x^5+33 x^4+39 x^3+51 x^2+12 x+46$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$| The endomorphism algebra of this simple isogeny class is 4.0.60942400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.113.be_qz | $2$ | (not in LMFDB) |