Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x + 436 x^{2} - 3390 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.152294777786$, $\pm0.324674258262$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.113198400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $68$ |
Isomorphism classes: | 136 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9786$ | $162702036$ | $2084940660474$ | $26588303998529616$ | $339458510510103231786$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $12742$ | $1444968$ | $163071046$ | $18424447944$ | $2081951685718$ | $235260557973588$ | $26584442279619838$ | $3004041942717486804$ | $339456739015889340022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=28 x^6+82 x^5+26 x^4+63 x^3+77 x^2+98 x+93$
- $y^2=21 x^6+74 x^5+60 x^4+79 x^3+27 x^2+81 x+3$
- $y^2=43 x^6+35 x^5+x^4+100 x^3+89 x^2+87 x+1$
- $y^2=87 x^6+112 x^5+44 x^4+110 x^3+90 x^2+14 x+94$
- $y^2=41 x^6+45 x^5+35 x^4+19 x^3+68 x^2+46 x+79$
- $y^2=41 x^6+25 x^5+79 x^4+51 x^3+66 x^2+11 x+103$
- $y^2=42 x^6+60 x^5+7 x^4+28 x^3+85 x^2+4 x+93$
- $y^2=6 x^6+97 x^5+42 x^4+19 x^3+24 x^2+47 x+34$
- $y^2=108 x^6+86 x^5+36 x^4+57 x^3+50 x^2+47 x+11$
- $y^2=112 x^6+32 x^5+3 x^4+36 x^3+80 x^2+77 x+52$
- $y^2=77 x^6+101 x^5+33 x^4+80 x^3+41 x^2+47 x+67$
- $y^2=76 x^6+85 x^5+25 x^4+12 x^3+74 x^2+4 x+79$
- $y^2=69 x^6+96 x^5+63 x^4+53 x^3+34 x^2+88 x+84$
- $y^2=74 x^6+92 x^5+9 x^4+60 x^3+41 x^2+39 x+30$
- $y^2=88 x^6+91 x^5+75 x^4+99 x^3+45 x^2+62 x+38$
- $y^2=108 x^6+111 x^5+77 x^4+17 x^3+75 x^2+9 x+89$
- $y^2=77 x^6+102 x^5+92 x^4+93 x^3+32 x^2+70 x+39$
- $y^2=72 x^6+77 x^5+42 x^4+24 x^3+26 x^2+74 x+73$
- $y^2=69 x^6+51 x^5+100 x^4+48 x^3+25 x^2+22 x$
- $y^2=54 x^6+12 x^5+53 x^4+94 x^3+66 x^2+81 x+16$
- and 48 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.113198400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.be_qu | $2$ | (not in LMFDB) |