## Results (1-50 of 288 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group
27.9.675...923.1 $x^{27} - 18 x^{23} - 18 x^{22} - 18 x^{21} + 18 x^{20} + 135 x^{19} + 219 x^{18} - 162 x^{17} + 324 x^{16} - 153 x^{15} - 81 x^{14} - 675 x^{13} - 630 x^{12} - 540 x^{11} - 513 x^{10} - 405 x^{9} + 27 x^{8} + 243 x^{7} + 387 x^{6} + 162 x^{5} - 81 x^{4} - 135 x^{3} + 27 x - 3$ $-\,3^{73}$ $S_3\times C_9$ (as 27T12) trivial
27.3.205...000.1 $x^{27} - 9 x^{26} + 39 x^{25} - 105 x^{24} + 180 x^{23} - 180 x^{22} + 60 x^{21} + 120 x^{20} - 135 x^{19} - 105 x^{18} - 585 x^{17} + 3075 x^{16} - 4200 x^{15} + 480 x^{14} + 5160 x^{13} - 5400 x^{12} + 1755 x^{11} + 1125 x^{10} - 3715 x^{9} + 2685 x^{8} - 300 x^{7} + 180 x^{6} + 540 x^{5} - 480 x^{4} + 75 x^{3} - 147 x^{2} - 27 x - 23$ $2^{24}\cdot 3^{30}\cdot 5^{24}$ $C_3^3:S_3$ (as 27T51) trivial
27.9.218...752.1 $x^{27} - 18 x^{25} - 9 x^{24} + 135 x^{23} + 63 x^{22} - 642 x^{21} - 135 x^{20} + 2133 x^{19} + 336 x^{18} - 6156 x^{17} - 270 x^{16} + 15525 x^{15} - 4347 x^{14} - 26667 x^{13} + 16194 x^{12} + 26730 x^{11} - 24912 x^{10} - 13179 x^{9} + 19197 x^{8} + 693 x^{7} - 6957 x^{6} + 1917 x^{5} + 648 x^{4} - 507 x^{3} + 135 x^{2} - 18 x + 1$ $-\,2^{18}\cdot 3^{69}$ $S_3\times C_9$ (as 27T12) trivial
27.1.437...027.1 $x^{27} - x - 1$ $-\,23\cdot 3539\cdot 535391\cdot 10033918834509020645502251401$ $S_{27}$ (as 27T2392) trivial
27.1.449...579.1 $x^{27} + x - 1$ $-\,151\cdot 144512650291622071\cdot 20602820982951053299$ $S_{27}$ (as 27T2392) trivial
27.3.638...544.1 $x^{27} - 9 x^{25} + 36 x^{23} - 18 x^{22} - 144 x^{21} - 54 x^{20} + 423 x^{19} + 42 x^{18} - 405 x^{17} - 1062 x^{16} + 1188 x^{15} + 1872 x^{14} - 3258 x^{13} - 1980 x^{12} + 5724 x^{11} + 504 x^{10} - 9564 x^{9} + 7128 x^{8} + 3744 x^{7} - 8640 x^{6} + 4248 x^{5} + 1008 x^{4} - 1440 x^{3} + 288 x - 64$ $2^{56}\cdot 3^{46}$ $S_3\wr S_3$ (as 27T298) trivial
27.9.656...256.1 $x^{27} - 9 x^{26} + 27 x^{25} - 24 x^{24} - 9 x^{23} - 63 x^{22} + 273 x^{21} + 144 x^{20} - 2376 x^{19} + 4050 x^{18} - 396 x^{17} - 3465 x^{16} - 141 x^{15} + 441 x^{14} + 17019 x^{13} - 33225 x^{12} + 12852 x^{11} + 17379 x^{10} - 14277 x^{9} + 1188 x^{8} + 1143 x^{7} - 501 x^{6} + 891 x^{5} + 216 x^{4} + 129 x^{3} + 18 x^{2} + 9 x - 1$ $-\,2^{18}\cdot 3^{70}$ $S_3\times C_9$ (as 27T12) trivial
27.1.800...063.1 $x^{27} - 9 x^{26} + 41 x^{25} - 116 x^{24} + 234 x^{23} - 347 x^{22} + 380 x^{21} - 274 x^{20} + 118 x^{19} - 121 x^{18} + 474 x^{17} - 1071 x^{16} + 1556 x^{15} - 1531 x^{14} + 964 x^{13} - 256 x^{12} + 122 x^{11} - 700 x^{10} + 1761 x^{9} - 2620 x^{8} + 2840 x^{7} - 2483 x^{6} + 1678 x^{5} - 860 x^{4} + 463 x^{3} - 60 x^{2} + 44 x - 1$ $-\,983^{13}$ $D_{27}$ (as 27T8) trivial
27.3.995...896.1 $x^{27} - 12 x^{26} + 63 x^{25} - 192 x^{24} + 378 x^{23} - 480 x^{22} + 246 x^{21} + 624 x^{20} - 2346 x^{19} + 4608 x^{18} - 5598 x^{17} + 2304 x^{16} + 6564 x^{15} - 19824 x^{14} + 34248 x^{13} - 40080 x^{12} + 27606 x^{11} - 2784 x^{10} - 23718 x^{9} + 45552 x^{8} - 47970 x^{7} + 29328 x^{6} - 11814 x^{5} + 4704 x^{4} - 1779 x^{3} + 468 x^{2} - 105 x + 16$ $2^{82}\cdot 3^{30}$ $\SO(5,3)$ (as 27T1161) trivial
27.9.162...375.1 $x^{27} - 9 x^{25} + 54 x^{23} - 63 x^{22} - 267 x^{21} + 513 x^{20} + 468 x^{19} - 981 x^{18} - 972 x^{17} - 1107 x^{16} + 9846 x^{15} - 4860 x^{14} - 24624 x^{13} + 41403 x^{12} - 9909 x^{11} - 43317 x^{10} + 67377 x^{9} - 45441 x^{8} - 4905 x^{7} + 46368 x^{6} - 47520 x^{5} + 19584 x^{4} + 1146 x^{3} - 3483 x^{2} + 594 x + 107$ $-\,3^{69}\cdot 5^{9}$ $S_3\times C_9$ (as 27T12) trivial
27.3.197...000.1 $x^{27} + 18 x^{25} + 135 x^{23} + 549 x^{21} + 1323 x^{19} - 252 x^{18} + 1944 x^{17} - 1566 x^{16} + 2133 x^{15} - 3726 x^{14} + 2430 x^{13} - 4509 x^{12} + 2430 x^{11} - 2754 x^{10} - 108 x^{9} - 729 x^{8} - 1782 x^{7} - 567 x^{6} - 972 x^{5} - 243 x^{4} - 162 x^{3} - 27$ $2^{12}\cdot 3^{66}\cdot 5^{6}$ $S_3\wr S_3$ (as 27T298) trivial
27.1.321...296.1 $x^{27} - 10 x^{26} + 38 x^{25} - 52 x^{24} - 84 x^{23} + 458 x^{22} - 715 x^{21} + 40 x^{20} + 1948 x^{19} - 3756 x^{18} + 1448 x^{17} + 4952 x^{16} - 7109 x^{15} + 94 x^{14} + 4978 x^{13} - 2352 x^{12} - 1300 x^{11} + 2422 x^{10} + 639 x^{9} - 3848 x^{8} - 28 x^{7} + 1728 x^{6} + 572 x^{5} - 368 x^{4} - 244 x^{3} + 48 x^{2} + 32 x - 16$ $-\,2^{18}\cdot 419^{13}$ $D_{27}$ (as 27T8) trivial
27.3.485...000.1 $x^{27} - 3 x^{26} - 9 x^{25} + 17 x^{24} - 6 x^{23} - 86 x^{22} + 42 x^{21} - 26 x^{20} + 2 x^{19} + 222 x^{18} - 620 x^{17} - 136 x^{16} + 1722 x^{15} - 1022 x^{14} - 1740 x^{13} + 3140 x^{12} + 278 x^{11} - 3510 x^{10} + 1746 x^{9} + 1702 x^{8} - 1886 x^{7} - 6 x^{6} + 1068 x^{5} - 272 x^{4} - 230 x^{3} + 166 x^{2} + 10 x - 58$ $2^{52}\cdot 3^{24}\cdot 5^{18}$ $\He_3:\GL(2,3)$ (as 27T294) trivial
27.3.708...816.1 $x^{27} - 3 x^{26} + 3 x^{25} - 25 x^{24} + 60 x^{23} - 60 x^{22} + 152 x^{21} - 216 x^{20} + 114 x^{19} + 234 x^{18} - 78 x^{17} + 762 x^{16} - 1152 x^{15} + 816 x^{14} - 96 x^{13} + 352 x^{12} - 984 x^{11} + 1128 x^{10} - 872 x^{9} + 696 x^{8} - 864 x^{7} + 480 x^{6} - 192 x^{5} + 192 x^{4} - 336 x^{3} + 240 x^{2} - 144 x + 48$ $2^{88}\cdot 3^{28}$ $\SO(5,3)$ (as 27T1161) trivial
27.7.769...000.1 $x^{27} - 3 x^{26} - 12 x^{25} + 54 x^{24} + 42 x^{23} - 588 x^{22} + 1104 x^{21} + 576 x^{20} - 5730 x^{19} + 9174 x^{18} - 222 x^{17} - 23034 x^{16} + 40404 x^{15} - 22632 x^{14} - 33780 x^{13} + 92028 x^{12} - 106221 x^{11} + 66099 x^{10} - 4728 x^{9} - 36054 x^{8} + 42234 x^{7} - 28380 x^{6} + 13176 x^{5} - 4332 x^{4} + 936 x^{3} - 96 x^{2} - 6 x + 2$ $2^{52}\cdot 3^{42}\cdot 5^{6}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.952...000.1 $x^{27} - 9 x^{25} - 9 x^{24} + 18 x^{23} + 72 x^{22} + 60 x^{21} - 126 x^{20} - 252 x^{19} - 162 x^{18} + 108 x^{17} + 126 x^{16} - 216 x^{15} + 450 x^{14} + 1692 x^{13} + 2670 x^{12} + 1899 x^{11} - 900 x^{10} - 1461 x^{9} - 3591 x^{8} - 6354 x^{7} - 990 x^{6} + 4392 x^{5} + 2448 x^{4} - 435 x^{3} - 720 x^{2} - 225 x - 25$ $2^{24}\cdot 3^{54}\cdot 5^{10}$ $C_3^3:S_4$ (as 27T211) trivial
27.3.108...000.1 $x^{27} - 3 x^{26} + 6 x^{25} - 24 x^{24} + 48 x^{23} - 168 x^{22} + 432 x^{21} - 912 x^{20} + 1881 x^{19} - 3339 x^{18} + 5010 x^{17} - 6228 x^{16} + 4974 x^{15} + 678 x^{14} - 7944 x^{13} + 10788 x^{12} - 6252 x^{11} - 1380 x^{10} + 6072 x^{9} - 6312 x^{8} + 3396 x^{7} + 324 x^{6} - 2112 x^{5} + 1416 x^{4} - 156 x^{3} - 252 x^{2} + 120 x - 16$ $2^{62}\cdot 3^{36}\cdot 5^{6}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.128...000.1 $x^{27} - 5 x^{26} + 11 x^{25} - 27 x^{24} + 46 x^{23} - 74 x^{22} + 120 x^{21} - 136 x^{20} + 173 x^{19} - 421 x^{18} + 473 x^{17} - 137 x^{16} + 1820 x^{15} - 868 x^{14} + 664 x^{13} - 2904 x^{12} + 1215 x^{11} - 2067 x^{10} - 1247 x^{9} - 337 x^{8} + 3998 x^{7} + 2582 x^{6} - 2528 x^{5} - 2064 x^{4} + 1443 x^{3} + 1693 x^{2} - 909 x - 2243$ $2^{68}\cdot 3^{6}\cdot 5^{24}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.131...000.1 $x^{27} - 9 x^{26} + 33 x^{25} - 41 x^{24} - 111 x^{23} + 597 x^{22} - 1314 x^{21} + 1746 x^{20} - 1209 x^{19} - 463 x^{18} + 2265 x^{17} - 3507 x^{16} + 4726 x^{15} - 6558 x^{14} + 8271 x^{13} - 2855 x^{12} - 13755 x^{11} + 25959 x^{10} - 17496 x^{9} - 1668 x^{8} + 13713 x^{7} - 14007 x^{6} + 7287 x^{5} - 1335 x^{4} + 331 x^{3} - 255 x^{2} + 42 x - 4$ $2^{30}\cdot 3^{30}\cdot 5^{24}$ $C_3^3:D_6$ (as 27T128) trivial
27.1.149...191.1 $x^{27} - 4 x^{26} + 14 x^{25} - 10 x^{24} + 37 x^{22} - 3 x^{21} - x^{20} + 139 x^{19} - 26 x^{18} + 76 x^{17} + 144 x^{16} - 117 x^{15} - 101 x^{14} + 12 x^{13} - 340 x^{12} + x^{11} + 205 x^{10} + 307 x^{9} + 774 x^{8} + 909 x^{7} + 892 x^{6} + 864 x^{5} + 521 x^{4} + 327 x^{3} + 86 x^{2} + 71 x + 1$ $-\,1231^{13}$ $D_{27}$ (as 27T8) trivial
27.3.163...864.1 $x^{27} - 6 x^{24} - 51 x^{21} + 36 x^{20} - 36 x^{19} + 576 x^{18} - 72 x^{17} + 396 x^{16} - 2727 x^{15} - 3600 x^{14} - 7794 x^{13} - 6246 x^{12} - 5355 x^{11} + 2124 x^{10} + 9909 x^{9} + 14238 x^{8} + 14238 x^{7} + 8964 x^{6} + 657 x^{5} - 2016 x^{4} - 1188 x^{3} - 144 x^{2} + 180 x + 96$ $2^{48}\cdot 3^{54}$ $\SO(5,3)$ (as 27T1161) trivial
27.9.177...912.1 $x^{27} - 18 x^{25} + 189 x^{23} - 63 x^{22} - 1062 x^{21} + 648 x^{20} + 4464 x^{19} - 2679 x^{18} - 14499 x^{17} + 7092 x^{16} + 36963 x^{15} - 21411 x^{14} - 74187 x^{13} + 24255 x^{12} + 61398 x^{11} - 36351 x^{10} - 17520 x^{9} + 66663 x^{8} + 42507 x^{7} - 11583 x^{6} - 18603 x^{5} - 10539 x^{4} - 6327 x^{3} - 2835 x^{2} - 639 x - 53$ $-\,2^{18}\cdot 3^{73}$ $S_3\times C_9$ (as 27T12) trivial
27.9.177...912.2 $x^{27} - 9 x^{26} + 36 x^{25} - 54 x^{24} - 180 x^{23} + 1296 x^{22} - 3699 x^{21} + 5184 x^{20} + 1737 x^{19} - 28278 x^{18} + 81630 x^{17} - 152073 x^{16} + 206037 x^{15} - 206640 x^{14} + 143748 x^{13} - 36954 x^{12} - 70929 x^{11} + 125325 x^{10} - 106329 x^{9} + 53154 x^{8} - 10548 x^{7} - 9594 x^{6} + 13185 x^{5} - 9180 x^{4} + 4068 x^{3} - 1053 x^{2} - 207 x + 163$ $-\,2^{18}\cdot 3^{73}$ $S_3\times C_9$ (as 27T12) trivial
27.1.252...624.1 $x^{27} - 9 x^{26} + 45 x^{25} - 154 x^{24} + 444 x^{23} - 1140 x^{22} + 2734 x^{21} - 5824 x^{20} + 11115 x^{19} - 18567 x^{18} + 29531 x^{17} - 43306 x^{16} + 56712 x^{15} - 56676 x^{14} + 52570 x^{13} - 50872 x^{12} + 59685 x^{11} - 40721 x^{10} + 10893 x^{9} + 10490 x^{8} - 13378 x^{7} + 7126 x^{6} - 3604 x^{5} - 204 x^{4} + 1348 x^{3} - 376 x^{2} + 8 x + 8$ $-\,2^{18}\cdot 491^{13}$ $D_{27}$ (as 27T8) $[2]$
27.3.453...824.1 $x^{27} - 3 x^{26} + 6 x^{25} - 18 x^{24} + 72 x^{23} - 204 x^{22} + 438 x^{21} - 726 x^{20} + 729 x^{19} + 449 x^{18} - 3888 x^{17} + 8532 x^{16} - 8376 x^{15} - 8784 x^{14} + 55152 x^{13} - 132288 x^{12} + 221472 x^{11} - 287712 x^{10} + 297440 x^{9} - 244608 x^{8} + 159168 x^{7} - 84288 x^{6} + 41328 x^{5} - 22800 x^{4} + 13176 x^{3} - 6024 x^{2} + 1728 x - 224$ $2^{78}\cdot 3^{36}$ $\SO(5,3)$ (as 27T1161) trivial
27.1.786...199.1 $x^{27} - x^{26} + 6 x^{25} - 31 x^{24} + 97 x^{23} - 269 x^{22} + 599 x^{21} - 994 x^{20} + 1307 x^{19} - 1298 x^{18} + 592 x^{17} + 817 x^{16} - 2461 x^{15} + 4001 x^{14} - 4903 x^{13} + 4315 x^{12} - 2279 x^{11} - 512 x^{10} + 3872 x^{9} - 6814 x^{8} + 7826 x^{7} - 7115 x^{6} + 5689 x^{5} - 3842 x^{4} + 1951 x^{3} - 627 x^{2} + 101 x - 1$ $-\,1399^{13}$ $D_{27}$ (as 27T8) $[2]$
27.3.828...624.1 $x^{27} + 9 x^{25} - 12 x^{24} + 18 x^{23} - 108 x^{22} - 78 x^{21} - 252 x^{20} - 549 x^{19} - 180 x^{18} - 2421 x^{17} - 1440 x^{16} - 4722 x^{15} - 4032 x^{14} + 4302 x^{13} + 672 x^{12} + 18828 x^{11} + 5832 x^{10} - 7284 x^{9} - 12528 x^{8} - 55944 x^{7} - 31872 x^{6} - 24768 x^{5} - 2016 x^{4} + 20640 x^{3} + 4608 x^{2} + 2880 x - 15488$ $2^{44}\cdot 3^{58}$ $C_3^3:S_4$ (as 27T211) $[3]$
27.3.919...336.1 $x^{27} - 9 x^{26} + 27 x^{25} - 19 x^{24} + 6 x^{23} - 378 x^{22} + 1324 x^{21} - 1272 x^{20} + 27 x^{19} - 5467 x^{18} + 21285 x^{17} - 25389 x^{16} + 8080 x^{15} - 28104 x^{14} + 120960 x^{13} - 179344 x^{12} + 107400 x^{11} - 8856 x^{10} + 10008 x^{9} - 60120 x^{8} + 70560 x^{7} - 49536 x^{6} + 29952 x^{5} - 17280 x^{4} + 9072 x^{3} - 3888 x^{2} + 1296 x - 144$ $2^{60}\cdot 3^{48}$ $\SO(5,3)$ (as 27T1161) trivial
27.7.129...616.1 $x^{27} - 90 x^{19} - 336 x^{18} + 1080 x^{15} - 1215 x^{11} + 3312 x^{10} - 2544 x^{9} + 1944 x^{7} - 1728 x^{6} - 324 x^{3} - 144 x - 64$ $2^{70}\cdot 3^{42}$ $\PSp(4,3)$ (as 27T993) trivial
27.1.149...032.1 $x^{27} - 7 x^{26} + 21 x^{25} - 50 x^{24} + 110 x^{23} - 244 x^{22} + 734 x^{21} - 2140 x^{20} + 5743 x^{19} - 13591 x^{18} + 28791 x^{17} - 54584 x^{16} + 93410 x^{15} - 138060 x^{14} + 176010 x^{13} - 189870 x^{12} + 169389 x^{11} - 127135 x^{10} + 89765 x^{9} - 72912 x^{8} + 70628 x^{7} - 65648 x^{6} + 50256 x^{5} - 29876 x^{4} + 13340 x^{3} - 4224 x^{2} + 848 x - 80$ $-\,2^{18}\cdot 563^{13}$ $D_{27}$ (as 27T8) $[2]$
27.3.181...296.1 $x^{27} - 3 x^{26} - 15 x^{25} + 45 x^{24} + 78 x^{23} - 210 x^{22} - 198 x^{21} + 306 x^{20} + 231 x^{19} - 493 x^{18} + 1887 x^{17} + 3 x^{16} - 8556 x^{15} + 12804 x^{14} - 7536 x^{13} - 6672 x^{12} + 20184 x^{11} - 10560 x^{10} - 11760 x^{9} + 30192 x^{8} - 53700 x^{7} + 65796 x^{6} - 58956 x^{5} + 51156 x^{4} - 36306 x^{3} + 18390 x^{2} - 8994 x + 2870$ $2^{80}\cdot 3^{36}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.261...824.1 $x^{27} - 9 x^{26} + 36 x^{25} - 78 x^{24} + 90 x^{23} - 36 x^{22} - 72 x^{21} + 324 x^{20} - 648 x^{19} + 412 x^{18} + 198 x^{17} - 198 x^{16} + 708 x^{15} - 864 x^{14} - 792 x^{13} + 216 x^{12} + 1026 x^{11} - 3114 x^{10} + 6088 x^{9} - 2124 x^{8} - 1116 x^{7} + 3456 x^{6} - 8136 x^{5} + 4536 x^{4} + 1512 x^{3} - 2664 x^{2} + 1692 x - 636$ $2^{52}\cdot 3^{54}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.393...000.1 $x^{27} - 6 x^{25} - 22 x^{24} + 6 x^{23} + 156 x^{22} + 166 x^{21} - 540 x^{20} - 1284 x^{19} + 764 x^{18} + 5586 x^{17} + 4776 x^{16} - 8664 x^{15} - 21792 x^{14} - 10272 x^{13} + 20704 x^{12} + 28602 x^{11} - 7008 x^{10} - 46852 x^{9} - 36588 x^{8} + 37356 x^{7} + 139024 x^{6} + 207180 x^{5} + 197280 x^{4} + 124824 x^{3} + 50112 x^{2} + 11316 x + 1048$ $2^{52}\cdot 3^{28}\cdot 5^{18}$ $\SO(5,3)$ (as 27T1161) trivial
27.1.476...207.1 $x^{27} - 3 x^{26} - 11 x^{25} + 17 x^{24} + 38 x^{23} + x^{22} + 157 x^{21} + 384 x^{20} + 124 x^{19} - 139 x^{18} + 318 x^{17} + 1284 x^{16} + 1757 x^{15} - 73 x^{14} - 3289 x^{13} - 3942 x^{12} - 2202 x^{11} - 2459 x^{10} - 3813 x^{9} - 1971 x^{8} + 2174 x^{7} + 7281 x^{6} + 9348 x^{5} + 4444 x^{4} - 209 x^{3} - 325 x^{2} + 132 x + 1$ $-\,1607^{13}$ $D_{27}$ (as 27T8) trivial
27.3.573...096.1 $x^{27} - 96 x^{21} - 180 x^{19} - 672 x^{18} - 1248 x^{15} + 4608 x^{13} - 5376 x^{12} - 4860 x^{11} + 13248 x^{10} - 15296 x^{9} + 21312 x^{7} - 10752 x^{6} - 10368 x^{5} + 4608 x^{4} + 1632 x^{3} - 1152 x - 512$ $2^{88}\cdot 3^{32}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.609...000.1 $x^{27} + 9 x^{25} - 27 x^{24} + 18 x^{23} + 18 x^{22} + 144 x^{21} - 144 x^{20} - 288 x^{19} + 120 x^{18} + 1944 x^{17} - 2304 x^{16} + 1944 x^{15} - 720 x^{14} - 288 x^{13} + 720 x^{12} + 8352 x^{11} - 7488 x^{10} + 8688 x^{9} - 1296 x^{8} - 5472 x^{7} + 6912 x^{6} - 5760 x^{5} + 1152 x^{4} + 576 x^{3} - 576 x^{2} + 576 x + 64$ $2^{30}\cdot 3^{54}\cdot 5^{10}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.653...056.1 $x^{27} - 3 x^{24} + 276 x^{21} - 3076 x^{18} + 10032 x^{15} - 12720 x^{12} + 9568 x^{9} + 792 x^{6} + 135 x^{3} + 27$ $2^{66}\cdot 3^{46}$ $\He_3:\GL(2,3)$ (as 27T294) trivial
27.27.105...721.1 $x^{27} - 45 x^{25} - 18 x^{24} + 837 x^{23} + 684 x^{22} - 8262 x^{21} - 10287 x^{20} + 45702 x^{19} + 79026 x^{18} - 134379 x^{17} - 333945 x^{16} + 151686 x^{15} + 784917 x^{14} + 175518 x^{13} - 983601 x^{12} - 695061 x^{11} + 544437 x^{10} + 756045 x^{9} + 21222 x^{8} - 337599 x^{7} - 142434 x^{6} + 39528 x^{5} + 42858 x^{4} + 7524 x^{3} - 2268 x^{2} - 1008 x - 107$ $3^{72}\cdot 19^{6}$ $C_3^3:C_9$ (as 27T98) trivial
27.1.154...079.1 $x^{27} - 6 x^{26} + 31 x^{25} - 80 x^{24} + 117 x^{23} - 51 x^{22} - 243 x^{21} + 807 x^{20} - 1350 x^{19} + 966 x^{18} + 1935 x^{17} - 9345 x^{16} + 23103 x^{15} - 43548 x^{14} + 68751 x^{13} - 94575 x^{12} + 115269 x^{11} - 125268 x^{10} + 121785 x^{9} - 105567 x^{8} + 81027 x^{7} - 54357 x^{6} + 31122 x^{5} - 14664 x^{4} + 5393 x^{3} - 1350 x^{2} + 179 x - 1$ $-\,1759^{13}$ $D_{27}$ (as 27T8) trivial
27.3.197...000.1 $x^{27} - 72 x^{22} - 72 x^{21} - 450 x^{19} - 840 x^{18} + 324 x^{17} + 864 x^{16} - 5832 x^{15} - 3240 x^{14} + 11700 x^{13} - 2232 x^{12} - 37503 x^{11} + 19800 x^{10} + 46524 x^{9} - 71280 x^{8} - 18360 x^{7} + 103680 x^{6} - 83268 x^{5} - 2232 x^{4} + 46692 x^{3} - 33696 x^{2} + 10296 x - 1648$ $2^{60}\cdot 3^{42}\cdot 5^{6}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.210...000.1 $x^{27} - 7 x^{26} + 17 x^{25} - 25 x^{24} + 84 x^{23} - 152 x^{22} + 42 x^{21} - 334 x^{20} + 690 x^{19} + 834 x^{18} + 1849 x^{17} + 735 x^{16} + 398 x^{15} + 1110 x^{14} + 3388 x^{13} + 5248 x^{12} + 6790 x^{11} + 11066 x^{10} + 11850 x^{9} + 5046 x^{8} - 2016 x^{7} - 4116 x^{6} - 5172 x^{5} - 5940 x^{4} - 4536 x^{3} - 1728 x^{2} - 186 x - 6$ $2^{50}\cdot 3^{22}\cdot 5^{24}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.237...000.1 $x^{27} - 3 x^{26} + 3 x^{25} - 19 x^{24} + 6 x^{23} - 102 x^{22} - 226 x^{21} - 498 x^{20} - 909 x^{19} - 445 x^{18} - 507 x^{17} + 975 x^{16} + 2228 x^{15} + 4668 x^{14} + 11076 x^{13} + 12980 x^{12} + 17511 x^{11} + 14643 x^{10} + 8685 x^{9} + 14619 x^{8} + 3462 x^{7} - 7574 x^{6} + 606 x^{5} + 1182 x^{4} - 1451 x^{3} + 957 x^{2} + 1179 x + 185$ $2^{40}\cdot 3^{46}\cdot 5^{12}$ $\He_3:\GL(2,3)$ (as 27T294) trivial
27.3.346...625.1 $x^{27} - 9 x^{26} + 63 x^{25} - 309 x^{24} + 1278 x^{23} - 4374 x^{22} + 13038 x^{21} - 33687 x^{20} + 76365 x^{19} - 150976 x^{18} + 256509 x^{17} - 363843 x^{16} + 387384 x^{15} - 193563 x^{14} - 398313 x^{13} + 1478712 x^{12} - 3028527 x^{11} + 4723794 x^{10} - 6156003 x^{9} + 6804108 x^{8} - 6491583 x^{7} + 5295510 x^{6} - 3678588 x^{5} + 2126304 x^{4} - 986832 x^{3} + 348192 x^{2} - 79488 x + 8064$ $3^{54}\cdot 5^{24}$ $C_3^3:S_4$ (as 27T211) $[2]$
27.3.353...000.1 $x^{27} - 36 x^{24} + 752 x^{21} + 528 x^{18} - 2616 x^{15} + 44416 x^{12} + 37248 x^{9} + 11712 x^{6} + 1616 x^{3} + 64$ $2^{52}\cdot 3^{30}\cdot 5^{18}$ $\He_3:\GL(2,3)$ (as 27T294) $[3]$
27.1.363...239.1 $x^{27} - 2 x^{26} + x^{25} + 18 x^{24} + 107 x^{23} + 180 x^{22} + 332 x^{21} + 290 x^{20} + 295 x^{19} - 179 x^{18} - 772 x^{17} - 1774 x^{16} - 2092 x^{15} - 2320 x^{14} - 811 x^{13} + 489 x^{12} + 3551 x^{11} + 5424 x^{10} + 7617 x^{9} + 6962 x^{8} + 6380 x^{7} + 2824 x^{6} + 2291 x^{5} - 521 x^{4} + 623 x^{3} - 221 x^{2} + 207 x - 1$ $-\,1879^{13}$ $D_{27}$ (as 27T8) $[4]$
27.3.419...184.1 $x^{27} - 9 x^{25} - 24 x^{24} + 36 x^{23} + 180 x^{22} + 108 x^{21} - 792 x^{20} - 486 x^{19} + 784 x^{18} + 4806 x^{17} - 10800 x^{16} + 6240 x^{15} + 3960 x^{14} + 9216 x^{13} - 29544 x^{12} + 24237 x^{11} - 43704 x^{10} + 90435 x^{9} - 103320 x^{8} + 71820 x^{7} - 40524 x^{6} + 49716 x^{5} - 66528 x^{4} + 47076 x^{3} - 17208 x^{2} + 3060 x - 208$ $2^{56}\cdot 3^{54}$ $\SO(5,3)$ (as 27T1161) trivial
27.3.473...000.1 $x^{27} - 11 x^{26} + 65 x^{25} - 272 x^{24} + 960 x^{23} - 3086 x^{22} + 8852 x^{21} - 21306 x^{20} + 40832 x^{19} - 59402 x^{18} + 60456 x^{17} - 33950 x^{16} - 5960 x^{15} + 28322 x^{14} - 22872 x^{13} + 7178 x^{12} - 3457 x^{11} - 3875 x^{10} + 9223 x^{9} + 1358 x^{8} + 2556 x^{7} + 112 x^{6} - 3632 x^{5} - 1888 x^{4} - 496 x^{3} - 104 x^{2} + 24 x + 48$ $2^{48}\cdot 3^{24}\cdot 5^{24}$ $\He_3:\GL(2,3)$ (as 27T294) trivial
27.3.758...000.1 $x^{27} + 120 x^{21} - 450 x^{19} - 840 x^{18} + 10200 x^{15} - 14400 x^{13} + 8400 x^{12} - 30375 x^{11} + 41400 x^{10} + 91300 x^{9} + 192600 x^{7} - 69600 x^{6} + 81000 x^{5} - 18000 x^{4} - 12300 x^{3} - 4500 x - 1000$ $2^{36}\cdot 3^{32}\cdot 5^{24}$ $\SO(5,3)$ (as 27T1161) trivial
27.1.813...999.1 $x^{27} - 11 x^{26} + 70 x^{25} - 273 x^{24} + 723 x^{23} - 1456 x^{22} + 2649 x^{21} - 4775 x^{20} + 8022 x^{19} - 11719 x^{18} + 15552 x^{17} - 20687 x^{16} + 27099 x^{15} - 31222 x^{14} + 31020 x^{13} - 30638 x^{12} + 32802 x^{11} - 31588 x^{10} + 22446 x^{9} - 12521 x^{8} + 9384 x^{7} - 8740 x^{6} + 4644 x^{5} - 254 x^{4} - 460 x^{3} - 287 x^{2} + 245 x + 1$ $-\,1999^{13}$ $D_{27}$ (as 27T8) $[5]$
27.3.826...424.1 $x^{27} - 144 x^{21} - 810 x^{19} - 1344 x^{18} - 6048 x^{15} + 31104 x^{13} - 16128 x^{12} - 98415 x^{11} + 119232 x^{10} - 26880 x^{9} + 163296 x^{7} - 27648 x^{6} - 314928 x^{5} + 62208 x^{4} + 62604 x^{3} - 20736 x - 4096$ $2^{76}\cdot 3^{42}$ $\SO(5,3)$ (as 27T1161) trivial
Next   displayed columns for results