Normalized defining polynomial
\( x^{27} - 10 x^{26} + 38 x^{25} - 52 x^{24} - 84 x^{23} + 458 x^{22} - 715 x^{21} + 40 x^{20} + 1948 x^{19} - 3756 x^{18} + 1448 x^{17} + 4952 x^{16} - 7109 x^{15} + 94 x^{14} + 4978 x^{13} - 2352 x^{12} - 1300 x^{11} + 2422 x^{10} + 639 x^{9} - 3848 x^{8} - 28 x^{7} + 1728 x^{6} + 572 x^{5} - 368 x^{4} - 244 x^{3} + 48 x^{2} + 32 x - 16 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-3216045767164746225347277064349747511296\)\(\medspace = -\,2^{18}\cdot 419^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $29.06$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 419$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{17} + \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{21} - \frac{1}{4} a^{18} + \frac{1}{4} a^{9} + \frac{1}{4} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{22} - \frac{1}{4} a^{19} + \frac{1}{4} a^{10} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{23} - \frac{1}{4} a^{17} + \frac{1}{4} a^{11} - \frac{1}{2} a^{8} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{304} a^{24} + \frac{17}{152} a^{23} - \frac{5}{76} a^{22} - \frac{17}{152} a^{21} + \frac{1}{76} a^{20} - \frac{37}{152} a^{19} + \frac{5}{304} a^{18} - \frac{7}{76} a^{17} - \frac{29}{152} a^{16} - \frac{13}{152} a^{15} - \frac{15}{76} a^{14} + \frac{5}{38} a^{13} - \frac{17}{304} a^{12} + \frac{73}{152} a^{11} - \frac{25}{76} a^{10} + \frac{15}{152} a^{9} + \frac{35}{76} a^{8} + \frac{33}{152} a^{7} + \frac{135}{304} a^{6} + \frac{13}{76} a^{5} + \frac{41}{152} a^{4} - \frac{3}{8} a^{3} + \frac{1}{19} a^{2} + \frac{15}{38} a + \frac{1}{38}$, $\frac{1}{1401136} a^{25} + \frac{455}{700568} a^{24} - \frac{1303}{31844} a^{23} - \frac{31653}{700568} a^{22} + \frac{490}{87571} a^{21} + \frac{38727}{700568} a^{20} + \frac{309557}{1401136} a^{19} - \frac{58515}{350284} a^{18} + \frac{3453}{36872} a^{17} - \frac{25721}{700568} a^{16} + \frac{1283}{350284} a^{15} - \frac{28909}{175142} a^{14} - \frac{7993}{1401136} a^{13} - \frac{91809}{700568} a^{12} - \frac{140001}{350284} a^{11} - \frac{29649}{700568} a^{10} - \frac{7996}{87571} a^{9} + \frac{42277}{700568} a^{8} - \frac{261553}{1401136} a^{7} + \frac{5893}{31844} a^{6} + \frac{19397}{700568} a^{5} - \frac{108921}{700568} a^{4} + \frac{27647}{175142} a^{3} + \frac{3059}{9218} a^{2} + \frac{72079}{175142} a + \frac{43492}{87571}$, $\frac{1}{2021524412970411423609490736936320265936} a^{26} - \frac{149310243908651546984597866318147}{1010762206485205711804745368468160132968} a^{25} + \frac{725769167919854291470636155805252771}{1010762206485205711804745368468160132968} a^{24} + \frac{47159158428516729468405631054011477041}{1010762206485205711804745368468160132968} a^{23} + \frac{7724272003002890784964152017943195079}{252690551621301427951186342117040033242} a^{22} - \frac{65775096526084604723170077839903511177}{1010762206485205711804745368468160132968} a^{21} + \frac{143468462002591006408784737812140442093}{2021524412970411423609490736936320265936} a^{20} + \frac{4954247751847883050954572655544806571}{505381103242602855902372684234080066484} a^{19} + \frac{258751511852258854052035575699407981}{5003773299431711444577947368654258084} a^{18} + \frac{143118338224460513990917079080827119439}{1010762206485205711804745368468160132968} a^{17} - \frac{9323170223199933286420699700432911620}{126345275810650713975593171058520016621} a^{16} + \frac{83025686381738109237952915488961816243}{505381103242602855902372684234080066484} a^{15} + \frac{489907161932065286925531333266738902599}{2021524412970411423609490736936320265936} a^{14} + \frac{22131320261993499663612294814657108215}{91887473316836882891340488042560012088} a^{13} + \frac{49661116057341538440807270642118487553}{1010762206485205711804745368468160132968} a^{12} - \frac{165438157122931003320093835635911329671}{1010762206485205711804745368468160132968} a^{11} - \frac{8965459137545940156654743853601782}{18670795893401908375290848390500963} a^{10} + \frac{219021078536998816490958699604240696725}{1010762206485205711804745368468160132968} a^{9} - \frac{622998458212255281532552028590751329585}{2021524412970411423609490736936320265936} a^{8} - \frac{99445563326765160201459000665274986737}{505381103242602855902372684234080066484} a^{7} + \frac{21696212947767430036921459410573771195}{505381103242602855902372684234080066484} a^{6} - \frac{444166229560181567386952439199069432901}{1010762206485205711804745368468160132968} a^{5} - \frac{207804859798452263605731001716062553001}{505381103242602855902372684234080066484} a^{4} + \frac{182776170099630548036176837015269720821}{505381103242602855902372684234080066484} a^{3} - \frac{793461660443770418881586828649579289}{2501886649715855722288973684327129042} a^{2} + \frac{6528976213544883390158468582789390940}{126345275810650713975593171058520016621} a - \frac{19871357481321199085180341607179695161}{126345275810650713975593171058520016621}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2806458409.197778 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.419.1, 9.1.30821664721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $27$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ | $27$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | $27$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
419 | Data not computed |