Normalized defining polynomial
\( x^{27} - 11 x^{26} + 70 x^{25} - 273 x^{24} + 723 x^{23} - 1456 x^{22} + 2649 x^{21} - 4775 x^{20} + 8022 x^{19} - 11719 x^{18} + 15552 x^{17} - 20687 x^{16} + 27099 x^{15} - 31222 x^{14} + 31020 x^{13} - 30638 x^{12} + 32802 x^{11} - 31588 x^{10} + 22446 x^{9} - 12521 x^{8} + 9384 x^{7} - 8740 x^{6} + 4644 x^{5} - 254 x^{4} - 460 x^{3} - 287 x^{2} + 245 x + 1 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-8138911451501750747538217172562287688025999\)\(\medspace = -\,1999^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $38.84$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $1999$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{19} + \frac{1}{9} a^{11} - \frac{2}{9} a^{3}$, $\frac{1}{27} a^{20} + \frac{1}{27} a^{19} + \frac{1}{27} a^{18} - \frac{1}{27} a^{17} + \frac{1}{27} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} - \frac{2}{27} a^{12} + \frac{4}{27} a^{11} - \frac{2}{27} a^{10} + \frac{2}{27} a^{9} + \frac{4}{27} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{27} a^{4} - \frac{5}{27} a^{3} + \frac{1}{27} a^{2} - \frac{1}{27} a - \frac{5}{27}$, $\frac{1}{27} a^{21} + \frac{1}{27} a^{18} - \frac{1}{27} a^{17} - \frac{1}{27} a^{16} - \frac{1}{9} a^{14} - \frac{2}{27} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{2}{27} a^{10} - \frac{1}{27} a^{9} - \frac{1}{27} a^{8} + \frac{1}{9} a^{6} + \frac{1}{27} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{27} a^{2} + \frac{2}{27} a + \frac{2}{27}$, $\frac{1}{27} a^{22} + \frac{1}{27} a^{19} - \frac{1}{27} a^{18} - \frac{1}{27} a^{17} - \frac{1}{9} a^{15} - \frac{2}{27} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{2}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{9} a^{7} + \frac{1}{27} a^{6} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{27} a^{3} + \frac{2}{27} a^{2} + \frac{2}{27} a$, $\frac{1}{27} a^{23} + \frac{1}{27} a^{19} + \frac{1}{27} a^{18} + \frac{1}{27} a^{17} - \frac{1}{27} a^{16} + \frac{4}{27} a^{15} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{2}{27} a^{11} + \frac{4}{27} a^{10} - \frac{2}{27} a^{9} + \frac{2}{27} a^{8} - \frac{5}{27} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{27} a^{3} - \frac{5}{27} a^{2} + \frac{1}{27} a - \frac{1}{27}$, $\frac{1}{189} a^{24} - \frac{1}{63} a^{23} - \frac{2}{189} a^{22} + \frac{1}{63} a^{21} + \frac{1}{189} a^{19} - \frac{1}{27} a^{18} - \frac{1}{27} a^{17} - \frac{2}{63} a^{16} + \frac{1}{9} a^{15} + \frac{13}{189} a^{14} - \frac{1}{21} a^{13} - \frac{5}{63} a^{12} - \frac{20}{189} a^{11} + \frac{29}{189} a^{10} + \frac{2}{189} a^{9} + \frac{2}{21} a^{8} - \frac{2}{21} a^{7} - \frac{92}{189} a^{6} - \frac{16}{63} a^{5} + \frac{2}{9} a^{4} + \frac{73}{189} a^{3} - \frac{7}{27} a^{2} - \frac{76}{189} a + \frac{41}{189}$, $\frac{1}{6968997} a^{25} + \frac{907}{409941} a^{24} - \frac{119131}{6968997} a^{23} - \frac{16438}{2322999} a^{22} + \frac{111016}{6968997} a^{21} + \frac{5534}{774333} a^{20} - \frac{117550}{6968997} a^{19} + \frac{5057}{110619} a^{18} + \frac{281212}{6968997} a^{17} + \frac{38770}{774333} a^{16} - \frac{89272}{6968997} a^{15} - \frac{34507}{258111} a^{14} + \frac{994459}{6968997} a^{13} - \frac{45130}{331857} a^{12} - \frac{64678}{6968997} a^{11} - \frac{113357}{2322999} a^{10} - \frac{1043939}{6968997} a^{9} - \frac{5744}{110619} a^{8} + \frac{1188476}{6968997} a^{7} - \frac{4358}{331857} a^{6} - \frac{2482178}{6968997} a^{5} + \frac{147064}{2322999} a^{4} - \frac{60232}{6968997} a^{3} - \frac{575689}{2322999} a^{2} + \frac{43906}{331857} a + \frac{63727}{6968997}$, $\frac{1}{79855436126887669833699303} a^{26} + \frac{104801159591417746}{26618478708962556611233101} a^{25} + \frac{127072061881935984532597}{79855436126887669833699303} a^{24} - \frac{68189693900012324788004}{4697378595699274696099959} a^{23} - \frac{391889938218029037163703}{79855436126887669833699303} a^{22} - \frac{1366807648025127246305939}{79855436126887669833699303} a^{21} + \frac{509293846790868260523068}{79855436126887669833699303} a^{20} + \frac{3644658169847964099826343}{79855436126887669833699303} a^{19} - \frac{2804983123956889631105531}{79855436126887669833699303} a^{18} + \frac{3010924131809467857903754}{79855436126887669833699303} a^{17} - \frac{2236115651416121970414559}{79855436126887669833699303} a^{16} - \frac{8611860194426630851480495}{79855436126887669833699303} a^{15} - \frac{2609933185132288020964031}{79855436126887669833699303} a^{14} - \frac{406653363276452098478081}{79855436126887669833699303} a^{13} - \frac{7810592198905232755225342}{79855436126887669833699303} a^{12} + \frac{4389508766377380161854151}{79855436126887669833699303} a^{11} - \frac{2892691666211877008047808}{79855436126887669833699303} a^{10} + \frac{207272027466504508000153}{1629702778099748363953047} a^{9} - \frac{9942350894977123238864734}{79855436126887669833699303} a^{8} - \frac{4706344577079224194741642}{11407919446698238547671329} a^{7} - \frac{308225689722384267609029}{4202917690888824728089437} a^{6} + \frac{224126230088268066994585}{4202917690888824728089437} a^{5} + \frac{10544844761348223144716288}{79855436126887669833699303} a^{4} + \frac{13799927362403524405532933}{79855436126887669833699303} a^{3} - \frac{1910091649126601849897194}{8872826236320852203744367} a^{2} - \frac{1490760866678323788247544}{4202917690888824728089437} a + \frac{6430148992251618469806301}{79855436126887669833699303}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 35248883953.15641 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.1999.1, 9.1.15968023992001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $27$ | $27$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
1999 | Data not computed |