Normalized defining polynomial
\( x^{27} - 3 x^{26} - 11 x^{25} + 17 x^{24} + 38 x^{23} + x^{22} + 157 x^{21} + 384 x^{20} + 124 x^{19} - 139 x^{18} + 318 x^{17} + 1284 x^{16} + 1757 x^{15} - 73 x^{14} - 3289 x^{13} - 3942 x^{12} - 2202 x^{11} - 2459 x^{10} - 3813 x^{9} - 1971 x^{8} + 2174 x^{7} + 7281 x^{6} + 9348 x^{5} + 4444 x^{4} - 209 x^{3} - 325 x^{2} + 132 x + 1 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-476657463863730234951616960570180249031207\)\(\medspace = -\,1607^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $34.97$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $1607$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{17} + \frac{2}{5} a^{16} + \frac{2}{5} a^{15} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{17} - \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{20} - \frac{1}{5} a^{17} + \frac{2}{5} a^{16} - \frac{1}{5} a^{15} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{8} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{35} a^{21} + \frac{3}{35} a^{20} + \frac{3}{35} a^{19} - \frac{2}{35} a^{18} + \frac{6}{35} a^{17} - \frac{12}{35} a^{16} - \frac{1}{7} a^{15} + \frac{13}{35} a^{14} + \frac{1}{7} a^{13} + \frac{13}{35} a^{12} - \frac{2}{7} a^{10} + \frac{16}{35} a^{9} - \frac{17}{35} a^{8} - \frac{1}{5} a^{7} - \frac{17}{35} a^{6} + \frac{1}{35} a^{5} + \frac{13}{35} a^{4} - \frac{1}{7} a^{3} - \frac{1}{5} a^{2} + \frac{13}{35}$, $\frac{1}{665} a^{22} + \frac{4}{665} a^{21} + \frac{11}{133} a^{20} - \frac{48}{665} a^{19} - \frac{17}{665} a^{18} - \frac{11}{133} a^{17} - \frac{206}{665} a^{16} - \frac{11}{35} a^{15} - \frac{16}{133} a^{14} - \frac{192}{665} a^{13} + \frac{62}{665} a^{12} + \frac{33}{133} a^{11} + \frac{181}{665} a^{10} + \frac{11}{35} a^{9} - \frac{23}{133} a^{8} + \frac{102}{665} a^{7} - \frac{2}{665} a^{6} - \frac{6}{19} a^{5} - \frac{216}{665} a^{4} + \frac{226}{665} a^{3} + \frac{5}{19} a^{2} + \frac{328}{665} a - \frac{253}{665}$, $\frac{1}{7315} a^{23} - \frac{3}{7315} a^{22} - \frac{6}{1463} a^{21} + \frac{327}{7315} a^{20} + \frac{136}{1463} a^{19} - \frac{124}{1463} a^{18} - \frac{272}{1463} a^{17} - \frac{1142}{7315} a^{16} + \frac{2599}{7315} a^{15} + \frac{3484}{7315} a^{14} - \frac{19}{77} a^{13} - \frac{116}{665} a^{12} - \frac{2969}{7315} a^{11} - \frac{1818}{7315} a^{10} + \frac{699}{1463} a^{9} + \frac{116}{1045} a^{8} + \frac{43}{1463} a^{7} - \frac{138}{1463} a^{6} + \frac{3}{11} a^{5} - \frac{2062}{7315} a^{4} + \frac{164}{665} a^{3} - \frac{1296}{7315} a^{2} - \frac{27}{133} a + \frac{2759}{7315}$, $\frac{1}{7315} a^{24} + \frac{1}{1463} a^{22} - \frac{1}{1463} a^{21} - \frac{9}{665} a^{20} - \frac{69}{1045} a^{19} - \frac{206}{7315} a^{18} - \frac{81}{209} a^{17} + \frac{488}{1463} a^{16} - \frac{628}{1463} a^{15} + \frac{2619}{7315} a^{14} + \frac{3253}{7315} a^{13} + \frac{2201}{7315} a^{12} - \frac{9}{19} a^{11} + \frac{82}{209} a^{10} - \frac{15}{133} a^{9} + \frac{23}{95} a^{8} + \frac{1517}{7315} a^{7} + \frac{2554}{7315} a^{6} + \frac{316}{1463} a^{5} + \frac{75}{209} a^{4} + \frac{16}{77} a^{3} + \frac{864}{7315} a^{2} - \frac{3357}{7315} a + \frac{683}{1463}$, $\frac{1}{507331825} a^{25} + \frac{47}{2899039} a^{24} + \frac{2901}{101466365} a^{23} - \frac{170218}{507331825} a^{22} + \frac{2821334}{507331825} a^{21} + \frac{5269406}{101466365} a^{20} - \frac{15266079}{507331825} a^{19} + \frac{15305287}{507331825} a^{18} - \frac{212664664}{507331825} a^{17} - \frac{168498919}{507331825} a^{16} - \frac{21747853}{46121075} a^{15} - \frac{2193648}{39025525} a^{14} + \frac{151978142}{507331825} a^{13} + \frac{209800709}{507331825} a^{12} - \frac{45198969}{101466365} a^{11} + \frac{239972862}{507331825} a^{10} - \frac{16459513}{72475975} a^{9} - \frac{6495960}{20293273} a^{8} + \frac{176365536}{507331825} a^{7} - \frac{99661203}{507331825} a^{6} - \frac{37279094}{507331825} a^{5} - \frac{230978304}{507331825} a^{4} + \frac{1509022}{4192825} a^{3} + \frac{1405846}{5575075} a^{2} - \frac{9701359}{46121075} a + \frac{7477044}{507331825}$, $\frac{1}{428868841741781426109186287225} a^{26} - \frac{278297844777010632302}{428868841741781426109186287225} a^{25} + \frac{1145844218385667626085717}{17154753669671257044367451489} a^{24} - \frac{7732945108632891182717323}{428868841741781426109186287225} a^{23} - \frac{12502488363078348647664205}{17154753669671257044367451489} a^{22} - \frac{1164579325629159958520926148}{428868841741781426109186287225} a^{21} + \frac{31568016733704365912024356941}{428868841741781426109186287225} a^{20} + \frac{6518369974081796127077360641}{85773768348356285221837257445} a^{19} + \frac{3209065575087253957326213934}{32989910903213955854552791325} a^{18} - \frac{172270955373800794227453244316}{428868841741781426109186287225} a^{17} + \frac{1256456649155263786239352428}{7797615304396025929257932495} a^{16} - \frac{116214233108560885714586995518}{428868841741781426109186287225} a^{15} - \frac{26006292905467005913468189497}{85773768348356285221837257445} a^{14} + \frac{370290406967653022151098592}{6597982180642791170910558265} a^{13} + \frac{210048499361139290941718622687}{428868841741781426109186287225} a^{12} + \frac{86533574042789474012902511832}{428868841741781426109186287225} a^{11} + \frac{24667610858795351838145847698}{85773768348356285221837257445} a^{10} + \frac{126070723644710921600311363747}{428868841741781426109186287225} a^{9} - \frac{6662030357205247806536133837}{61266977391683060872740898175} a^{8} - \frac{39746888767483753286531721}{88153924304579943701785465} a^{7} - \frac{198071170610519074238339961833}{428868841741781426109186287225} a^{6} - \frac{121820910773846789839053296716}{428868841741781426109186287225} a^{5} + \frac{259441432797730746640577686}{7797615304396025929257932495} a^{4} - \frac{161364442280294508345099747798}{428868841741781426109186287225} a^{3} + \frac{635951452125229850686432827}{5569725217425732806612808925} a^{2} + \frac{2470702217691593758520790713}{22572044302199022426799278275} a + \frac{360071919525117303031542702}{3544370592907284513299060225}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 16112744313.230444 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.1607.1, 9.1.6669042837601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | $27$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $27$ | $27$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
1607 | Data not computed |