Normalized defining polynomial
\( x^{27} - 7 x^{26} + 21 x^{25} - 50 x^{24} + 110 x^{23} - 244 x^{22} + 734 x^{21} - 2140 x^{20} + 5743 x^{19} - 13591 x^{18} + 28791 x^{17} - 54584 x^{16} + 93410 x^{15} - 138060 x^{14} + 176010 x^{13} - 189870 x^{12} + 169389 x^{11} - 127135 x^{10} + 89765 x^{9} - 72912 x^{8} + 70628 x^{7} - 65648 x^{6} + 50256 x^{5} - 29876 x^{4} + 13340 x^{3} - 4224 x^{2} + 848 x - 80 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-149674927005884133619412112407487159468032\)\(\medspace = -\,2^{18}\cdot 563^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $33.50$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 563$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{17} + \frac{1}{10} a^{16} - \frac{1}{20} a^{15} - \frac{1}{10} a^{14} + \frac{1}{5} a^{13} - \frac{1}{10} a^{12} - \frac{1}{20} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{8} - \frac{1}{4} a^{7} - \frac{1}{20} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{2} - \frac{2}{5} a$, $\frac{1}{20} a^{18} - \frac{1}{10} a^{14} - \frac{1}{4} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{3}{20} a^{9} - \frac{3}{10} a^{8} - \frac{1}{20} a^{6} + \frac{9}{20} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{10} a^{2} - \frac{1}{5} a$, $\frac{1}{20} a^{19} - \frac{1}{10} a^{15} - \frac{1}{4} a^{14} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{3}{20} a^{10} + \frac{1}{5} a^{9} - \frac{1}{2} a^{8} - \frac{1}{20} a^{7} - \frac{1}{20} a^{6} - \frac{1}{5} a^{5} + \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{40} a^{20} - \frac{1}{40} a^{19} - \frac{1}{40} a^{17} + \frac{1}{40} a^{16} - \frac{1}{20} a^{15} + \frac{1}{8} a^{14} - \frac{9}{40} a^{13} - \frac{3}{40} a^{12} - \frac{1}{10} a^{11} + \frac{1}{8} a^{10} - \frac{9}{40} a^{9} - \frac{1}{10} a^{8} + \frac{1}{8} a^{7} + \frac{17}{40} a^{6} + \frac{3}{10} a^{5} + \frac{1}{10} a^{4} + \frac{9}{20} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5} a$, $\frac{1}{40} a^{21} - \frac{1}{40} a^{19} - \frac{1}{40} a^{18} - \frac{1}{40} a^{16} + \frac{3}{40} a^{15} - \frac{1}{10} a^{14} + \frac{1}{5} a^{13} - \frac{7}{40} a^{12} + \frac{1}{40} a^{11} - \frac{1}{10} a^{10} + \frac{7}{40} a^{9} + \frac{1}{40} a^{8} - \frac{9}{20} a^{7} - \frac{11}{40} a^{6} - \frac{1}{10} a^{5} - \frac{9}{20} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a$, $\frac{1}{40} a^{22} - \frac{1}{20} a^{16} - \frac{1}{20} a^{15} + \frac{9}{40} a^{14} + \frac{1}{5} a^{13} - \frac{1}{10} a^{11} + \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{19}{40} a^{6} + \frac{1}{10} a^{5} - \frac{9}{20} a^{4} - \frac{3}{20} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{40} a^{23} + \frac{1}{20} a^{16} - \frac{3}{40} a^{15} - \frac{3}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{20} a^{10} - \frac{3}{20} a^{9} + \frac{1}{5} a^{8} + \frac{1}{40} a^{7} - \frac{3}{20} a^{6} - \frac{1}{4} a^{5} - \frac{1}{20} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{40} a^{24} + \frac{3}{40} a^{16} - \frac{1}{10} a^{15} + \frac{1}{20} a^{14} - \frac{3}{20} a^{13} + \frac{1}{20} a^{12} + \frac{1}{10} a^{11} + \frac{1}{20} a^{10} - \frac{1}{20} a^{9} + \frac{3}{8} a^{8} - \frac{2}{5} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{3}{10} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{973400} a^{25} - \frac{137}{97340} a^{24} - \frac{737}{97340} a^{23} - \frac{4}{785} a^{22} + \frac{489}{97340} a^{21} - \frac{5739}{973400} a^{20} - \frac{14249}{973400} a^{19} + \frac{2012}{121675} a^{18} + \frac{77}{15700} a^{17} + \frac{621}{31400} a^{16} - \frac{4869}{243350} a^{15} - \frac{173167}{973400} a^{14} + \frac{4707}{31400} a^{13} + \frac{160601}{973400} a^{12} + \frac{277}{24335} a^{11} - \frac{209751}{973400} a^{10} + \frac{27823}{243350} a^{9} - \frac{2227}{19468} a^{8} + \frac{120443}{973400} a^{7} - \frac{325971}{973400} a^{6} - \frac{26279}{121675} a^{5} + \frac{2821}{7850} a^{4} + \frac{177613}{486700} a^{3} - \frac{40787}{243350} a^{2} - \frac{56989}{121675} a + \frac{5748}{24335}$, $\frac{1}{36780145240738430396201552959538777000} a^{26} - \frac{71229904979266566300430724512}{148307037261042058049199810320720875} a^{25} - \frac{55930775430782559388279940543055987}{7356029048147686079240310591907755400} a^{24} - \frac{6902941856408461776965683635737411}{3678014524073843039620155295953877700} a^{23} - \frac{7903911116310811080278450687257691}{1471205809629537215848062118381551080} a^{22} - \frac{50023599997166183298482387857148968}{4597518155092303799525194119942347125} a^{21} + \frac{20208106414630741400362409024458309}{7356029048147686079240310591907755400} a^{20} + \frac{120821099224319928917148331018931001}{7356029048147686079240310591907755400} a^{19} + \frac{318495498524937405890390504192716723}{36780145240738430396201552959538777000} a^{18} + \frac{11840379126968696074718097017070587}{1186456298088336464393598482565767000} a^{17} - \frac{227749930802853890200765610549494801}{18390072620369215198100776479769388500} a^{16} + \frac{1807485432875035154488869825775803077}{18390072620369215198100776479769388500} a^{15} - \frac{565695241699780992525278367374063729}{9195036310184607599050388239884694250} a^{14} + \frac{4262525231837336397756830574368420219}{36780145240738430396201552959538777000} a^{13} + \frac{5075644638805319627808081934587175999}{36780145240738430396201552959538777000} a^{12} + \frac{748359368691465578433331388763999681}{9195036310184607599050388239884694250} a^{11} + \frac{945872447522729370973144930221996326}{4597518155092303799525194119942347125} a^{10} + \frac{4700402157486075254911752090656895463}{36780145240738430396201552959538777000} a^{9} - \frac{9532466378859860213929350944933769957}{36780145240738430396201552959538777000} a^{8} - \frac{4475202718578510749523357325657256279}{36780145240738430396201552959538777000} a^{7} + \frac{2121727607180706448400995205902423277}{18390072620369215198100776479769388500} a^{6} - \frac{6212173002965935698759031628099623087}{18390072620369215198100776479769388500} a^{5} - \frac{4392006291370127650358930641832926169}{18390072620369215198100776479769388500} a^{4} - \frac{1264526551414922658515745850498254651}{9195036310184607599050388239884694250} a^{3} - \frac{3152349305454504139724675129548697371}{9195036310184607599050388239884694250} a^{2} - \frac{2137599926502749520296877232776359216}{4597518155092303799525194119942347125} a - \frac{445885343244733984234298607402289833}{919503631018460759905038823988469425}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 14887194175.434155 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.563.1, 9.1.100469346961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $27$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
563 | Data not computed |