Normalized defining polynomial
\( x^{27} - 18 x^{23} - 18 x^{22} - 18 x^{21} + 18 x^{20} + 135 x^{19} + 219 x^{18} - 162 x^{17} + 324 x^{16} - 153 x^{15} - 81 x^{14} - 675 x^{13} - 630 x^{12} - 540 x^{11} - 513 x^{10} - 405 x^{9} + 27 x^{8} + 243 x^{7} + 387 x^{6} + 162 x^{5} - 81 x^{4} - 135 x^{3} + 27 x - 3 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[9, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-67585198634817523235520443624317923\)\(\medspace = -\,3^{73}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $19.50$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $9$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{2067989529675373872884142445660740956329891519} a^{26} - \frac{722974281903480422799051858697221070742482387}{2067989529675373872884142445660740956329891519} a^{25} - \frac{918901109894091580648639856802626304305232628}{2067989529675373872884142445660740956329891519} a^{24} - \frac{295987832165049516451713142671550340473251091}{2067989529675373872884142445660740956329891519} a^{23} - \frac{642777361828979540235103178402636871106262830}{2067989529675373872884142445660740956329891519} a^{22} + \frac{417072548283108759086905711277752467903911114}{2067989529675373872884142445660740956329891519} a^{21} - \frac{324789928860912273563572044304887478851174346}{2067989529675373872884142445660740956329891519} a^{20} + \frac{695884600294162644250792752766551951776614362}{2067989529675373872884142445660740956329891519} a^{19} + \frac{669096430000185971564537158048054086135371489}{2067989529675373872884142445660740956329891519} a^{18} - \frac{390090589481473694433135220033384417982096277}{2067989529675373872884142445660740956329891519} a^{17} + \frac{236998120770844126550684541769708975802059520}{2067989529675373872884142445660740956329891519} a^{16} - \frac{666876739092276732929631066605921154801864686}{2067989529675373872884142445660740956329891519} a^{15} - \frac{410874737164245420506206270481420947413439594}{2067989529675373872884142445660740956329891519} a^{14} + \frac{618139372204512679612844946670604040657041499}{2067989529675373872884142445660740956329891519} a^{13} + \frac{566345675009369576985715326577590916703595742}{2067989529675373872884142445660740956329891519} a^{12} + \frac{959221259000895114077985293216290119837643174}{2067989529675373872884142445660740956329891519} a^{11} - \frac{190014449903910784685826210382469719913539507}{2067989529675373872884142445660740956329891519} a^{10} - \frac{448259172440178594540466386319143354158218435}{2067989529675373872884142445660740956329891519} a^{9} - \frac{13075459083820824895251889955627525817297204}{2067989529675373872884142445660740956329891519} a^{8} + \frac{281559977539359769251539520365739911501054175}{2067989529675373872884142445660740956329891519} a^{7} - \frac{250093779461215400345076533857602512248203790}{2067989529675373872884142445660740956329891519} a^{6} + \frac{410599330461173958194533282523002377218650008}{2067989529675373872884142445660740956329891519} a^{5} - \frac{937902165296727869075064491784868463451609918}{2067989529675373872884142445660740956329891519} a^{4} - \frac{371297873541147134549144758359820500631716035}{2067989529675373872884142445660740956329891519} a^{3} + \frac{873675768297034425964017081646149327941872348}{2067989529675373872884142445660740956329891519} a^{2} + \frac{340260045433520020513952473001492281215732106}{2067989529675373872884142445660740956329891519} a - \frac{524393845738372758729930025949274252823095372}{2067989529675373872884142445660740956329891519}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $17$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 13605448.556703938 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_9\times S_3$ (as 27T12):
A solvable group of order 54 |
The 27 conjugacy class representatives for $C_9\times S_3$ |
Character table for $C_9\times S_3$ is not computed |
Intermediate fields
\(\Q(\zeta_{9})^+\), 3.1.243.1, \(\Q(\zeta_{27})^+\), 9.3.1162261467.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $18{,}\,{\href{/LocalNumberField/2.9.0.1}{9} }$ | R | $18{,}\,{\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | $18{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | $18{,}\,{\href{/LocalNumberField/23.9.0.1}{9} }$ | $18{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | $18{,}\,{\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | $18{,}\,{\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{9}$ | $18{,}\,{\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.9.6t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
1.9.6t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
1.27.18t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.27.18t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
1.27.18t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
1.27.18t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.27.18t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
1.27.18t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 2.243.3t2.b.a | $2$ | $ 3^{5}$ | 3.1.243.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.243.6t5.b.a | $2$ | $ 3^{5}$ | 6.0.177147.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.243.6t5.b.b | $2$ | $ 3^{5}$ | 6.0.177147.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.729.18t16.b.a | $2$ | $ 3^{6}$ | 27.9.67585198634817523235520443624317923.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.729.18t16.b.b | $2$ | $ 3^{6}$ | 27.9.67585198634817523235520443624317923.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.729.18t16.b.c | $2$ | $ 3^{6}$ | 27.9.67585198634817523235520443624317923.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.729.18t16.b.d | $2$ | $ 3^{6}$ | 27.9.67585198634817523235520443624317923.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.729.18t16.b.e | $2$ | $ 3^{6}$ | 27.9.67585198634817523235520443624317923.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.729.18t16.b.f | $2$ | $ 3^{6}$ | 27.9.67585198634817523235520443624317923.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |