Normalized defining polynomial
\( x^{27} - 9 x^{25} + 54 x^{23} - 63 x^{22} - 267 x^{21} + 513 x^{20} + 468 x^{19} - 981 x^{18} - 972 x^{17} - 1107 x^{16} + 9846 x^{15} - 4860 x^{14} - 24624 x^{13} + 41403 x^{12} - 9909 x^{11} - 43317 x^{10} + 67377 x^{9} - 45441 x^{8} - 4905 x^{7} + 46368 x^{6} - 47520 x^{5} + 19584 x^{4} + 1146 x^{3} - 3483 x^{2} + 594 x + 107 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[9, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-1629658531896641667523158845107974609375\)\(\medspace = -\,3^{69}\cdot 5^{9}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $28.33$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 5$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $9$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{29263810769911153046352889049466687356254874979839618} a^{26} + \frac{3419550329809412100880078169440009637214349803917056}{14631905384955576523176444524733343678127437489919809} a^{25} - \frac{2892624569425075524006339116503772507303244459906005}{14631905384955576523176444524733343678127437489919809} a^{24} + \frac{1726836209005783767240250356164171668536551921176999}{29263810769911153046352889049466687356254874979839618} a^{23} + \frac{4178775804803567919164203985543911742617299816248643}{29263810769911153046352889049466687356254874979839618} a^{22} + \frac{296160998104678823710257757609644828162161956208527}{29263810769911153046352889049466687356254874979839618} a^{21} - \frac{874745324455829679374943934805293566085750136428379}{29263810769911153046352889049466687356254874979839618} a^{20} + \frac{2741346013697942828644213103460334809263173790707268}{14631905384955576523176444524733343678127437489919809} a^{19} + \frac{3294680994200639642734725690102078100953253411135604}{14631905384955576523176444524733343678127437489919809} a^{18} + \frac{4772576373462896971772979056012890941455821967325978}{14631905384955576523176444524733343678127437489919809} a^{17} + \frac{6603539202718690322459573745740364891415815153420057}{29263810769911153046352889049466687356254874979839618} a^{16} + \frac{3387446350092365861575450016791555378421980120866244}{14631905384955576523176444524733343678127437489919809} a^{15} - \frac{10247430567154000755426291522006859365991615321672345}{29263810769911153046352889049466687356254874979839618} a^{14} - \frac{14271935746968336440094101569245943657751398375098783}{29263810769911153046352889049466687356254874979839618} a^{13} - \frac{1172658153356232313508158720486346525885381870852431}{14631905384955576523176444524733343678127437489919809} a^{12} - \frac{10504118014573427210986397984904277803357338502995883}{29263810769911153046352889049466687356254874979839618} a^{11} + \frac{11479076854800872950744103875848556992599464310389021}{29263810769911153046352889049466687356254874979839618} a^{10} - \frac{6239268676769101192492088501209074012937355453862325}{29263810769911153046352889049466687356254874979839618} a^{9} - \frac{7235190757258376429296280770016964135803707843916607}{29263810769911153046352889049466687356254874979839618} a^{8} + \frac{9067373601357130814120087736413392942777374591863563}{29263810769911153046352889049466687356254874979839618} a^{7} - \frac{5220173301891205313706987805229276017888684889636756}{14631905384955576523176444524733343678127437489919809} a^{6} - \frac{4952830302607840292039676049581550051330320816885637}{29263810769911153046352889049466687356254874979839618} a^{5} + \frac{3537759033787507736198931889313954435716808732012290}{14631905384955576523176444524733343678127437489919809} a^{4} - \frac{1608666662883179873754072355649383721794580194608110}{14631905384955576523176444524733343678127437489919809} a^{3} + \frac{11702908843437837050799236432376631631822647079190721}{29263810769911153046352889049466687356254874979839618} a^{2} - \frac{6109599231982349451426351220820722163109110060433765}{14631905384955576523176444524733343678127437489919809} a - \frac{4827344544412023449872620756210775991941492214695481}{29263810769911153046352889049466687356254874979839618}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $17$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2153441387.4033856 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_9\times S_3$ (as 27T12):
A solvable group of order 54 |
The 27 conjugacy class representatives for $C_9\times S_3$ |
Character table for $C_9\times S_3$ is not computed |
Intermediate fields
\(\Q(\zeta_{9})^+\), 3.1.135.1, \(\Q(\zeta_{27})^+\), 9.3.1793613375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | R | R | $18{,}\,{\href{/LocalNumberField/7.9.0.1}{9} }$ | $18{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | $18{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | $18{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | $18{,}\,{\href{/LocalNumberField/41.9.0.1}{9} }$ | $18{,}\,{\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $18{,}\,{\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
5 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.15.2t1.a.a | $1$ | $ 3 \cdot 5 $ | \(\Q(\sqrt{-15}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
1.45.6t1.b.a | $1$ | $ 3^{2} \cdot 5 $ | 6.0.2460375.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.45.6t1.b.b | $1$ | $ 3^{2} \cdot 5 $ | 6.0.2460375.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
1.135.18t1.b.a | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.135.18t1.b.b | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.135.18t1.b.c | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
1.135.18t1.b.d | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.135.18t1.b.e | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
1.135.18t1.b.f | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 2.135.3t2.b.a | $2$ | $ 3^{3} \cdot 5 $ | 3.1.135.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.405.6t5.a.a | $2$ | $ 3^{4} \cdot 5 $ | 6.0.2460375.2 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.405.6t5.a.b | $2$ | $ 3^{4} \cdot 5 $ | 6.0.2460375.2 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.3645.18t16.a.a | $2$ | $ 3^{6} \cdot 5 $ | 27.9.1629658531896641667523158845107974609375.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.3645.18t16.a.b | $2$ | $ 3^{6} \cdot 5 $ | 27.9.1629658531896641667523158845107974609375.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.3645.18t16.a.c | $2$ | $ 3^{6} \cdot 5 $ | 27.9.1629658531896641667523158845107974609375.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.3645.18t16.a.d | $2$ | $ 3^{6} \cdot 5 $ | 27.9.1629658531896641667523158845107974609375.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.3645.18t16.a.e | $2$ | $ 3^{6} \cdot 5 $ | 27.9.1629658531896641667523158845107974609375.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.3645.18t16.a.f | $2$ | $ 3^{6} \cdot 5 $ | 27.9.1629658531896641667523158845107974609375.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |