Normalized defining polynomial
\( x^{27} - 2 x^{26} + x^{25} + 18 x^{24} + 107 x^{23} + 180 x^{22} + 332 x^{21} + 290 x^{20} + 295 x^{19} - 179 x^{18} - 772 x^{17} - 1774 x^{16} - 2092 x^{15} - 2320 x^{14} - 811 x^{13} + 489 x^{12} + 3551 x^{11} + 5424 x^{10} + 7617 x^{9} + 6962 x^{8} + 6380 x^{7} + 2824 x^{6} + 2291 x^{5} - 521 x^{4} + 623 x^{3} - 221 x^{2} + 207 x - 1 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-3639553781467035763182087002112051895733239\)\(\medspace = -\,1879^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $37.70$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $1879$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{9} a^{5} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{16} + \frac{1}{27} a^{15} - \frac{4}{27} a^{12} - \frac{4}{27} a^{10} - \frac{2}{27} a^{9} - \frac{1}{9} a^{8} + \frac{5}{27} a^{7} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} - \frac{5}{27} a^{4} + \frac{1}{9} a^{3} + \frac{8}{27} a - \frac{7}{27}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{17} + \frac{1}{27} a^{16} - \frac{1}{27} a^{13} + \frac{2}{27} a^{11} + \frac{4}{27} a^{10} + \frac{2}{27} a^{8} + \frac{1}{9} a^{7} - \frac{2}{9} a^{6} - \frac{8}{27} a^{5} - \frac{2}{9} a^{4} + \frac{1}{9} a^{3} + \frac{11}{27} a^{2} - \frac{10}{27} a + \frac{4}{9}$, $\frac{1}{27} a^{20} + \frac{1}{27} a^{17} - \frac{1}{27} a^{16} - \frac{1}{27} a^{15} - \frac{1}{27} a^{14} - \frac{1}{9} a^{12} + \frac{4}{27} a^{11} + \frac{4}{27} a^{10} + \frac{4}{27} a^{9} - \frac{1}{9} a^{8} - \frac{11}{27} a^{7} + \frac{7}{27} a^{6} - \frac{1}{3} a^{5} - \frac{10}{27} a^{4} + \frac{8}{27} a^{3} - \frac{10}{27} a^{2} + \frac{4}{27} a - \frac{11}{27}$, $\frac{1}{81} a^{21} - \frac{1}{81} a^{19} + \frac{4}{81} a^{17} + \frac{1}{27} a^{16} + \frac{4}{81} a^{15} - \frac{1}{27} a^{14} + \frac{1}{81} a^{13} - \frac{4}{81} a^{12} + \frac{2}{81} a^{11} + \frac{4}{81} a^{10} - \frac{10}{81} a^{9} - \frac{4}{81} a^{8} + \frac{29}{81} a^{7} - \frac{1}{27} a^{6} - \frac{35}{81} a^{5} + \frac{40}{81} a^{4} + \frac{29}{81} a^{3} - \frac{16}{81} a^{2} + \frac{7}{27} a + \frac{28}{81}$, $\frac{1}{1053} a^{22} - \frac{1}{351} a^{21} + \frac{14}{1053} a^{20} + \frac{2}{351} a^{19} + \frac{7}{1053} a^{18} + \frac{4}{117} a^{17} + \frac{22}{1053} a^{16} + \frac{2}{117} a^{15} + \frac{49}{1053} a^{14} + \frac{53}{1053} a^{13} - \frac{34}{1053} a^{12} + \frac{82}{1053} a^{11} + \frac{47}{1053} a^{10} + \frac{53}{1053} a^{9} - \frac{4}{81} a^{8} - \frac{146}{351} a^{7} + \frac{475}{1053} a^{6} - \frac{176}{1053} a^{5} + \frac{419}{1053} a^{4} + \frac{503}{1053} a^{3} + \frac{2}{27} a^{2} - \frac{278}{1053} a + \frac{32}{117}$, $\frac{1}{660231} a^{23} - \frac{14}{220077} a^{22} + \frac{1036}{220077} a^{21} - \frac{46}{24453} a^{20} - \frac{2446}{220077} a^{19} + \frac{727}{220077} a^{18} - \frac{31633}{660231} a^{17} - \frac{137}{220077} a^{16} + \frac{12971}{660231} a^{15} - \frac{9268}{660231} a^{14} + \frac{4907}{220077} a^{13} - \frac{35428}{220077} a^{12} + \frac{3077}{60021} a^{11} - \frac{22949}{220077} a^{10} - \frac{4742}{50787} a^{9} + \frac{41201}{660231} a^{8} + \frac{97589}{220077} a^{7} + \frac{160855}{660231} a^{6} - \frac{92767}{220077} a^{5} + \frac{1106}{2717} a^{4} - \frac{13834}{50787} a^{3} + \frac{9134}{24453} a^{2} - \frac{73471}{220077} a - \frac{16976}{50787}$, $\frac{1}{660231} a^{24} + \frac{10}{73359} a^{22} + \frac{80}{20007} a^{21} - \frac{137}{24453} a^{20} - \frac{1328}{73359} a^{19} + \frac{2285}{660231} a^{18} + \frac{3998}{73359} a^{17} - \frac{7426}{660231} a^{16} + \frac{15731}{660231} a^{15} + \frac{734}{16929} a^{14} - \frac{71}{16929} a^{13} - \frac{2207}{660231} a^{12} + \frac{28102}{220077} a^{11} + \frac{60769}{660231} a^{10} - \frac{38677}{660231} a^{9} - \frac{2048}{24453} a^{8} + \frac{176647}{660231} a^{7} - \frac{1321}{24453} a^{6} - \frac{3008}{24453} a^{5} + \frac{181892}{660231} a^{4} - \frac{67403}{220077} a^{3} + \frac{1822}{16929} a^{2} + \frac{260530}{660231} a - \frac{11281}{73359}$, $\frac{1}{2748541653} a^{25} - \frac{379}{2748541653} a^{24} + \frac{37}{249867423} a^{23} - \frac{70184}{305393517} a^{22} - \frac{4644260}{916180551} a^{21} - \frac{53558}{23491809} a^{20} - \frac{2391217}{2748541653} a^{19} - \frac{37820729}{2748541653} a^{18} + \frac{14361475}{916180551} a^{17} + \frac{40660544}{916180551} a^{16} + \frac{61609466}{2748541653} a^{15} + \frac{95881726}{2748541653} a^{14} + \frac{15152659}{2748541653} a^{13} - \frac{294418369}{2748541653} a^{12} - \frac{4819130}{48220029} a^{11} + \frac{161806582}{2748541653} a^{10} + \frac{39508234}{916180551} a^{9} + \frac{25391468}{2748541653} a^{8} - \frac{281013985}{2748541653} a^{7} + \frac{1281820217}{2748541653} a^{6} + \frac{732597692}{2748541653} a^{5} - \frac{792823778}{2748541653} a^{4} - \frac{903329036}{2748541653} a^{3} + \frac{516456796}{2748541653} a^{2} - \frac{355118539}{2748541653} a + \frac{1359261317}{2748541653}$, $\frac{1}{20415664415361501} a^{26} - \frac{77512}{618656497435197} a^{25} - \frac{372163378}{887637583276587} a^{24} + \frac{11356514027}{20415664415361501} a^{23} + \frac{2064472311619}{6805221471787167} a^{22} - \frac{1439099449343}{618656497435197} a^{21} - \frac{7475350304912}{887637583276587} a^{20} - \frac{50445961554746}{6805221471787167} a^{19} - \frac{161504644084115}{20415664415361501} a^{18} + \frac{53867607631555}{6805221471787167} a^{17} - \frac{207808209734284}{20415664415361501} a^{16} - \frac{170618308883543}{6805221471787167} a^{15} + \frac{42868602822712}{887637583276587} a^{14} - \frac{6383639394283}{295879194425529} a^{13} - \frac{105453720071077}{1074508653440079} a^{12} - \frac{2684484427036436}{20415664415361501} a^{11} - \frac{463213092146975}{20415664415361501} a^{10} - \frac{1560623540623783}{20415664415361501} a^{9} - \frac{99420778868012}{1570435724258577} a^{8} + \frac{305705949961427}{1855969492305591} a^{7} - \frac{10172989146730250}{20415664415361501} a^{6} - \frac{3392601989309746}{6805221471787167} a^{5} - \frac{2572942807864126}{20415664415361501} a^{4} - \frac{6022331046167413}{20415664415361501} a^{3} + \frac{92268633458152}{206218832478399} a^{2} + \frac{412509601318531}{20415664415361501} a + \frac{2159165400573521}{20415664415361501}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 25801652404.76311 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.1879.1, 9.1.12465425870881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $27$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{9}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
1879 | Data not computed |