Properties

Label 27.9.177...912.1
Degree $27$
Signature $[9, 9]$
Discriminant $-1.772\times 10^{40}$
Root discriminant \(30.95\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times C_9$ (as 27T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 18*x^25 + 189*x^23 - 63*x^22 - 1062*x^21 + 648*x^20 + 4464*x^19 - 2679*x^18 - 14499*x^17 + 7092*x^16 + 36963*x^15 - 21411*x^14 - 74187*x^13 + 24255*x^12 + 61398*x^11 - 36351*x^10 - 17520*x^9 + 66663*x^8 + 42507*x^7 - 11583*x^6 - 18603*x^5 - 10539*x^4 - 6327*x^3 - 2835*x^2 - 639*x - 53)
 
gp: K = bnfinit(y^27 - 18*y^25 + 189*y^23 - 63*y^22 - 1062*y^21 + 648*y^20 + 4464*y^19 - 2679*y^18 - 14499*y^17 + 7092*y^16 + 36963*y^15 - 21411*y^14 - 74187*y^13 + 24255*y^12 + 61398*y^11 - 36351*y^10 - 17520*y^9 + 66663*y^8 + 42507*y^7 - 11583*y^6 - 18603*y^5 - 10539*y^4 - 6327*y^3 - 2835*y^2 - 639*y - 53, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 18*x^25 + 189*x^23 - 63*x^22 - 1062*x^21 + 648*x^20 + 4464*x^19 - 2679*x^18 - 14499*x^17 + 7092*x^16 + 36963*x^15 - 21411*x^14 - 74187*x^13 + 24255*x^12 + 61398*x^11 - 36351*x^10 - 17520*x^9 + 66663*x^8 + 42507*x^7 - 11583*x^6 - 18603*x^5 - 10539*x^4 - 6327*x^3 - 2835*x^2 - 639*x - 53);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 18*x^25 + 189*x^23 - 63*x^22 - 1062*x^21 + 648*x^20 + 4464*x^19 - 2679*x^18 - 14499*x^17 + 7092*x^16 + 36963*x^15 - 21411*x^14 - 74187*x^13 + 24255*x^12 + 61398*x^11 - 36351*x^10 - 17520*x^9 + 66663*x^8 + 42507*x^7 - 11583*x^6 - 18603*x^5 - 10539*x^4 - 6327*x^3 - 2835*x^2 - 639*x - 53)
 

\( x^{27} - 18 x^{25} + 189 x^{23} - 63 x^{22} - 1062 x^{21} + 648 x^{20} + 4464 x^{19} - 2679 x^{18} + \cdots - 53 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[9, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-17717054310925604811052271173453197606912\) \(\medspace = -\,2^{18}\cdot 3^{73}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.95\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{49/18}\approx 31.5876084551639$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $9$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{12}+\frac{1}{3}a^{9}+\frac{1}{3}a^{6}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{16}-\frac{1}{3}a^{13}+\frac{1}{3}a^{10}+\frac{1}{3}a^{7}-\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{3}a^{17}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}-\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{18}-\frac{1}{3}a^{9}+\frac{1}{3}$, $\frac{1}{3}a^{19}-\frac{1}{3}a^{10}+\frac{1}{3}a$, $\frac{1}{3}a^{20}-\frac{1}{3}a^{11}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{21}-\frac{1}{3}a^{12}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{22}-\frac{1}{3}a^{13}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{23}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{24}-\frac{1}{3}a^{12}+\frac{1}{3}a^{9}-\frac{1}{3}a^{6}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{25}-\frac{1}{3}a^{13}+\frac{1}{3}a^{10}-\frac{1}{3}a^{7}-\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{11\!\cdots\!93}a^{26}-\frac{24\!\cdots\!14}{38\!\cdots\!31}a^{25}-\frac{40\!\cdots\!69}{38\!\cdots\!31}a^{24}-\frac{73\!\cdots\!53}{11\!\cdots\!93}a^{23}-\frac{44\!\cdots\!02}{38\!\cdots\!31}a^{22}+\frac{19\!\cdots\!57}{11\!\cdots\!93}a^{21}+\frac{63\!\cdots\!00}{38\!\cdots\!31}a^{20}-\frac{78\!\cdots\!13}{11\!\cdots\!93}a^{19}+\frac{36\!\cdots\!16}{38\!\cdots\!31}a^{18}-\frac{21\!\cdots\!37}{11\!\cdots\!93}a^{17}+\frac{17\!\cdots\!81}{11\!\cdots\!93}a^{16}+\frac{10\!\cdots\!01}{11\!\cdots\!93}a^{15}+\frac{34\!\cdots\!71}{11\!\cdots\!93}a^{14}-\frac{83\!\cdots\!02}{11\!\cdots\!93}a^{13}-\frac{57\!\cdots\!39}{11\!\cdots\!93}a^{12}-\frac{75\!\cdots\!88}{38\!\cdots\!31}a^{11}-\frac{54\!\cdots\!51}{11\!\cdots\!93}a^{10}-\frac{57\!\cdots\!14}{11\!\cdots\!93}a^{9}-\frac{15\!\cdots\!80}{11\!\cdots\!93}a^{8}-\frac{41\!\cdots\!83}{11\!\cdots\!93}a^{7}+\frac{22\!\cdots\!05}{11\!\cdots\!93}a^{6}-\frac{22\!\cdots\!89}{11\!\cdots\!93}a^{5}+\frac{44\!\cdots\!51}{11\!\cdots\!93}a^{4}-\frac{10\!\cdots\!46}{38\!\cdots\!31}a^{3}+\frac{70\!\cdots\!18}{38\!\cdots\!31}a^{2}-\frac{19\!\cdots\!83}{38\!\cdots\!31}a+\frac{15\!\cdots\!69}{11\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{82\!\cdots\!42}{12\!\cdots\!31}a^{26}-\frac{51\!\cdots\!16}{12\!\cdots\!31}a^{25}-\frac{14\!\cdots\!33}{12\!\cdots\!31}a^{24}+\frac{91\!\cdots\!24}{12\!\cdots\!31}a^{23}+\frac{14\!\cdots\!68}{12\!\cdots\!31}a^{22}-\frac{14\!\cdots\!06}{12\!\cdots\!31}a^{21}-\frac{78\!\cdots\!63}{12\!\cdots\!31}a^{20}+\frac{10\!\cdots\!63}{12\!\cdots\!31}a^{19}+\frac{90\!\cdots\!78}{38\!\cdots\!93}a^{18}-\frac{41\!\cdots\!20}{12\!\cdots\!31}a^{17}-\frac{93\!\cdots\!76}{12\!\cdots\!31}a^{16}+\frac{11\!\cdots\!70}{12\!\cdots\!31}a^{15}+\frac{23\!\cdots\!09}{12\!\cdots\!31}a^{14}-\frac{32\!\cdots\!42}{12\!\cdots\!31}a^{13}-\frac{40\!\cdots\!71}{12\!\cdots\!31}a^{12}+\frac{45\!\cdots\!85}{12\!\cdots\!31}a^{11}+\frac{21\!\cdots\!86}{12\!\cdots\!31}a^{10}-\frac{13\!\cdots\!03}{38\!\cdots\!93}a^{9}+\frac{12\!\cdots\!31}{12\!\cdots\!31}a^{8}+\frac{46\!\cdots\!74}{12\!\cdots\!31}a^{7}+\frac{57\!\cdots\!86}{12\!\cdots\!31}a^{6}-\frac{13\!\cdots\!80}{12\!\cdots\!31}a^{5}-\frac{71\!\cdots\!18}{12\!\cdots\!31}a^{4}-\frac{42\!\cdots\!99}{12\!\cdots\!31}a^{3}-\frac{25\!\cdots\!59}{12\!\cdots\!31}a^{2}-\frac{72\!\cdots\!07}{12\!\cdots\!31}a-\frac{21\!\cdots\!19}{38\!\cdots\!93}$, $\frac{25\!\cdots\!68}{12\!\cdots\!31}a^{26}-\frac{15\!\cdots\!22}{12\!\cdots\!31}a^{25}-\frac{45\!\cdots\!29}{12\!\cdots\!31}a^{24}+\frac{27\!\cdots\!49}{12\!\cdots\!31}a^{23}+\frac{46\!\cdots\!40}{12\!\cdots\!31}a^{22}-\frac{44\!\cdots\!32}{12\!\cdots\!31}a^{21}-\frac{24\!\cdots\!00}{12\!\cdots\!31}a^{20}+\frac{31\!\cdots\!08}{12\!\cdots\!31}a^{19}+\frac{28\!\cdots\!11}{38\!\cdots\!93}a^{18}-\frac{12\!\cdots\!24}{12\!\cdots\!31}a^{17}-\frac{29\!\cdots\!41}{12\!\cdots\!31}a^{16}+\frac{36\!\cdots\!99}{12\!\cdots\!31}a^{15}+\frac{72\!\cdots\!00}{12\!\cdots\!31}a^{14}-\frac{99\!\cdots\!45}{12\!\cdots\!31}a^{13}-\frac{12\!\cdots\!77}{12\!\cdots\!31}a^{12}+\frac{14\!\cdots\!96}{12\!\cdots\!31}a^{11}+\frac{69\!\cdots\!00}{12\!\cdots\!31}a^{10}-\frac{40\!\cdots\!76}{38\!\cdots\!93}a^{9}+\frac{38\!\cdots\!80}{12\!\cdots\!31}a^{8}+\frac{14\!\cdots\!61}{12\!\cdots\!31}a^{7}+\frac{18\!\cdots\!27}{12\!\cdots\!31}a^{6}-\frac{40\!\cdots\!99}{12\!\cdots\!31}a^{5}-\frac{22\!\cdots\!32}{12\!\cdots\!31}a^{4}-\frac{13\!\cdots\!12}{12\!\cdots\!31}a^{3}-\frac{80\!\cdots\!52}{12\!\cdots\!31}a^{2}-\frac{23\!\cdots\!68}{12\!\cdots\!31}a-\frac{67\!\cdots\!00}{38\!\cdots\!93}$, $\frac{11\!\cdots\!24}{11\!\cdots\!93}a^{26}-\frac{87\!\cdots\!58}{11\!\cdots\!93}a^{25}-\frac{67\!\cdots\!99}{38\!\cdots\!31}a^{24}+\frac{15\!\cdots\!86}{11\!\cdots\!93}a^{23}+\frac{20\!\cdots\!56}{11\!\cdots\!93}a^{22}-\frac{76\!\cdots\!10}{38\!\cdots\!31}a^{21}-\frac{10\!\cdots\!83}{11\!\cdots\!93}a^{20}+\frac{15\!\cdots\!78}{11\!\cdots\!93}a^{19}+\frac{39\!\cdots\!82}{11\!\cdots\!93}a^{18}-\frac{61\!\cdots\!50}{11\!\cdots\!93}a^{17}-\frac{12\!\cdots\!43}{11\!\cdots\!93}a^{16}+\frac{17\!\cdots\!22}{11\!\cdots\!93}a^{15}+\frac{29\!\cdots\!50}{11\!\cdots\!93}a^{14}-\frac{47\!\cdots\!88}{11\!\cdots\!93}a^{13}-\frac{50\!\cdots\!91}{11\!\cdots\!93}a^{12}+\frac{66\!\cdots\!68}{11\!\cdots\!93}a^{11}+\frac{20\!\cdots\!10}{11\!\cdots\!93}a^{10}-\frac{19\!\cdots\!36}{38\!\cdots\!31}a^{9}+\frac{24\!\cdots\!83}{11\!\cdots\!93}a^{8}+\frac{59\!\cdots\!88}{11\!\cdots\!93}a^{7}+\frac{35\!\cdots\!64}{11\!\cdots\!93}a^{6}-\frac{16\!\cdots\!10}{11\!\cdots\!93}a^{5}-\frac{86\!\cdots\!91}{11\!\cdots\!93}a^{4}-\frac{54\!\cdots\!32}{11\!\cdots\!93}a^{3}-\frac{31\!\cdots\!82}{11\!\cdots\!93}a^{2}-\frac{83\!\cdots\!14}{11\!\cdots\!93}a-\frac{78\!\cdots\!83}{11\!\cdots\!93}$, $\frac{56\!\cdots\!22}{11\!\cdots\!93}a^{26}-\frac{12\!\cdots\!96}{38\!\cdots\!31}a^{25}-\frac{33\!\cdots\!55}{38\!\cdots\!31}a^{24}+\frac{64\!\cdots\!33}{11\!\cdots\!93}a^{23}+\frac{10\!\cdots\!02}{11\!\cdots\!93}a^{22}-\frac{10\!\cdots\!64}{11\!\cdots\!93}a^{21}-\frac{53\!\cdots\!03}{11\!\cdots\!93}a^{20}+\frac{23\!\cdots\!52}{38\!\cdots\!31}a^{19}+\frac{20\!\cdots\!87}{11\!\cdots\!93}a^{18}-\frac{28\!\cdots\!40}{11\!\cdots\!93}a^{17}-\frac{21\!\cdots\!60}{38\!\cdots\!31}a^{16}+\frac{81\!\cdots\!61}{11\!\cdots\!93}a^{15}+\frac{15\!\cdots\!66}{11\!\cdots\!93}a^{14}-\frac{22\!\cdots\!81}{11\!\cdots\!93}a^{13}-\frac{27\!\cdots\!24}{11\!\cdots\!93}a^{12}+\frac{31\!\cdots\!16}{11\!\cdots\!93}a^{11}+\frac{46\!\cdots\!90}{38\!\cdots\!31}a^{10}-\frac{29\!\cdots\!56}{11\!\cdots\!93}a^{9}+\frac{95\!\cdots\!80}{11\!\cdots\!93}a^{8}+\frac{10\!\cdots\!67}{38\!\cdots\!31}a^{7}+\frac{34\!\cdots\!95}{11\!\cdots\!93}a^{6}-\frac{88\!\cdots\!63}{11\!\cdots\!93}a^{5}-\frac{47\!\cdots\!72}{11\!\cdots\!93}a^{4}-\frac{94\!\cdots\!20}{38\!\cdots\!31}a^{3}-\frac{17\!\cdots\!70}{11\!\cdots\!93}a^{2}-\frac{16\!\cdots\!16}{38\!\cdots\!31}a-\frac{15\!\cdots\!73}{38\!\cdots\!31}$, $\frac{49\!\cdots\!60}{11\!\cdots\!93}a^{26}-\frac{30\!\cdots\!18}{11\!\cdots\!93}a^{25}-\frac{29\!\cdots\!33}{38\!\cdots\!31}a^{24}+\frac{54\!\cdots\!67}{11\!\cdots\!93}a^{23}+\frac{30\!\cdots\!52}{38\!\cdots\!31}a^{22}-\frac{87\!\cdots\!02}{11\!\cdots\!93}a^{21}-\frac{47\!\cdots\!35}{11\!\cdots\!93}a^{20}+\frac{61\!\cdots\!43}{11\!\cdots\!93}a^{19}+\frac{61\!\cdots\!69}{38\!\cdots\!31}a^{18}-\frac{24\!\cdots\!40}{11\!\cdots\!93}a^{17}-\frac{56\!\cdots\!73}{11\!\cdots\!93}a^{16}+\frac{70\!\cdots\!61}{11\!\cdots\!93}a^{15}+\frac{14\!\cdots\!29}{11\!\cdots\!93}a^{14}-\frac{64\!\cdots\!99}{38\!\cdots\!31}a^{13}-\frac{83\!\cdots\!87}{38\!\cdots\!31}a^{12}+\frac{27\!\cdots\!33}{11\!\cdots\!93}a^{11}+\frac{13\!\cdots\!30}{11\!\cdots\!93}a^{10}-\frac{26\!\cdots\!43}{11\!\cdots\!93}a^{9}+\frac{76\!\cdots\!27}{11\!\cdots\!93}a^{8}+\frac{28\!\cdots\!29}{11\!\cdots\!93}a^{7}+\frac{36\!\cdots\!41}{11\!\cdots\!93}a^{6}-\frac{79\!\cdots\!19}{11\!\cdots\!93}a^{5}-\frac{14\!\cdots\!86}{38\!\cdots\!31}a^{4}-\frac{25\!\cdots\!83}{11\!\cdots\!93}a^{3}-\frac{15\!\cdots\!79}{11\!\cdots\!93}a^{2}-\frac{44\!\cdots\!27}{11\!\cdots\!93}a-\frac{43\!\cdots\!39}{11\!\cdots\!93}$, $\frac{98\!\cdots\!30}{11\!\cdots\!93}a^{26}-\frac{68\!\cdots\!82}{11\!\cdots\!93}a^{25}-\frac{17\!\cdots\!60}{11\!\cdots\!93}a^{24}+\frac{11\!\cdots\!17}{11\!\cdots\!93}a^{23}+\frac{17\!\cdots\!70}{11\!\cdots\!93}a^{22}-\frac{18\!\cdots\!66}{11\!\cdots\!93}a^{21}-\frac{91\!\cdots\!66}{11\!\cdots\!93}a^{20}+\frac{42\!\cdots\!56}{38\!\cdots\!31}a^{19}+\frac{34\!\cdots\!07}{11\!\cdots\!93}a^{18}-\frac{50\!\cdots\!66}{11\!\cdots\!93}a^{17}-\frac{10\!\cdots\!67}{11\!\cdots\!93}a^{16}+\frac{14\!\cdots\!61}{11\!\cdots\!93}a^{15}+\frac{26\!\cdots\!14}{11\!\cdots\!93}a^{14}-\frac{39\!\cdots\!27}{11\!\cdots\!93}a^{13}-\frac{15\!\cdots\!59}{38\!\cdots\!31}a^{12}+\frac{54\!\cdots\!66}{11\!\cdots\!93}a^{11}+\frac{71\!\cdots\!04}{38\!\cdots\!31}a^{10}-\frac{16\!\cdots\!66}{38\!\cdots\!31}a^{9}+\frac{17\!\cdots\!42}{11\!\cdots\!93}a^{8}+\frac{52\!\cdots\!55}{11\!\cdots\!93}a^{7}+\frac{18\!\cdots\!63}{38\!\cdots\!31}a^{6}-\frac{14\!\cdots\!55}{11\!\cdots\!93}a^{5}-\frac{81\!\cdots\!55}{11\!\cdots\!93}a^{4}-\frac{48\!\cdots\!46}{11\!\cdots\!93}a^{3}-\frac{28\!\cdots\!10}{11\!\cdots\!93}a^{2}-\frac{27\!\cdots\!76}{38\!\cdots\!31}a-\frac{81\!\cdots\!94}{11\!\cdots\!93}$, $\frac{79\!\cdots\!34}{38\!\cdots\!31}a^{26}-\frac{16\!\cdots\!58}{11\!\cdots\!93}a^{25}-\frac{41\!\cdots\!06}{11\!\cdots\!93}a^{24}+\frac{29\!\cdots\!31}{11\!\cdots\!93}a^{23}+\frac{42\!\cdots\!94}{11\!\cdots\!93}a^{22}-\frac{45\!\cdots\!18}{11\!\cdots\!93}a^{21}-\frac{73\!\cdots\!92}{38\!\cdots\!31}a^{20}+\frac{31\!\cdots\!26}{11\!\cdots\!93}a^{19}+\frac{84\!\cdots\!25}{11\!\cdots\!93}a^{18}-\frac{41\!\cdots\!02}{38\!\cdots\!31}a^{17}-\frac{25\!\cdots\!28}{11\!\cdots\!93}a^{16}+\frac{35\!\cdots\!87}{11\!\cdots\!93}a^{15}+\frac{63\!\cdots\!28}{11\!\cdots\!93}a^{14}-\frac{96\!\cdots\!21}{11\!\cdots\!93}a^{13}-\frac{10\!\cdots\!65}{11\!\cdots\!93}a^{12}+\frac{45\!\cdots\!88}{38\!\cdots\!31}a^{11}+\frac{51\!\cdots\!00}{11\!\cdots\!93}a^{10}-\frac{12\!\cdots\!64}{11\!\cdots\!93}a^{9}+\frac{15\!\cdots\!82}{38\!\cdots\!31}a^{8}+\frac{12\!\cdots\!29}{11\!\cdots\!93}a^{7}+\frac{33\!\cdots\!61}{38\!\cdots\!31}a^{6}-\frac{36\!\cdots\!73}{11\!\cdots\!93}a^{5}-\frac{18\!\cdots\!49}{11\!\cdots\!93}a^{4}-\frac{38\!\cdots\!56}{38\!\cdots\!31}a^{3}-\frac{22\!\cdots\!80}{38\!\cdots\!31}a^{2}-\frac{18\!\cdots\!50}{11\!\cdots\!93}a-\frac{55\!\cdots\!64}{38\!\cdots\!31}$, $\frac{29\!\cdots\!98}{38\!\cdots\!31}a^{26}-\frac{76\!\cdots\!32}{11\!\cdots\!93}a^{25}-\frac{15\!\cdots\!90}{11\!\cdots\!93}a^{24}+\frac{13\!\cdots\!82}{11\!\cdots\!93}a^{23}+\frac{52\!\cdots\!70}{38\!\cdots\!31}a^{22}-\frac{64\!\cdots\!62}{38\!\cdots\!31}a^{21}-\frac{26\!\cdots\!90}{38\!\cdots\!31}a^{20}+\frac{12\!\cdots\!46}{11\!\cdots\!93}a^{19}+\frac{29\!\cdots\!28}{11\!\cdots\!93}a^{18}-\frac{16\!\cdots\!78}{38\!\cdots\!31}a^{17}-\frac{88\!\cdots\!01}{11\!\cdots\!93}a^{16}+\frac{47\!\cdots\!24}{38\!\cdots\!31}a^{15}+\frac{21\!\cdots\!96}{11\!\cdots\!93}a^{14}-\frac{12\!\cdots\!04}{38\!\cdots\!31}a^{13}-\frac{34\!\cdots\!46}{11\!\cdots\!93}a^{12}+\frac{17\!\cdots\!68}{38\!\cdots\!31}a^{11}+\frac{10\!\cdots\!48}{11\!\cdots\!93}a^{10}-\frac{44\!\cdots\!52}{11\!\cdots\!93}a^{9}+\frac{76\!\cdots\!97}{38\!\cdots\!31}a^{8}+\frac{42\!\cdots\!16}{11\!\cdots\!93}a^{7}-\frac{20\!\cdots\!44}{11\!\cdots\!93}a^{6}-\frac{12\!\cdots\!42}{11\!\cdots\!93}a^{5}-\frac{19\!\cdots\!41}{38\!\cdots\!31}a^{4}-\frac{38\!\cdots\!24}{11\!\cdots\!93}a^{3}-\frac{71\!\cdots\!60}{38\!\cdots\!31}a^{2}-\frac{52\!\cdots\!90}{11\!\cdots\!93}a-\frac{13\!\cdots\!22}{38\!\cdots\!31}$, $\frac{83\!\cdots\!16}{38\!\cdots\!31}a^{26}-\frac{15\!\cdots\!73}{11\!\cdots\!93}a^{25}-\frac{44\!\cdots\!08}{11\!\cdots\!93}a^{24}+\frac{27\!\cdots\!57}{11\!\cdots\!93}a^{23}+\frac{45\!\cdots\!64}{11\!\cdots\!93}a^{22}-\frac{44\!\cdots\!89}{11\!\cdots\!93}a^{21}-\frac{23\!\cdots\!01}{11\!\cdots\!93}a^{20}+\frac{31\!\cdots\!07}{11\!\cdots\!93}a^{19}+\frac{30\!\cdots\!75}{38\!\cdots\!31}a^{18}-\frac{41\!\cdots\!64}{38\!\cdots\!31}a^{17}-\frac{28\!\cdots\!22}{11\!\cdots\!93}a^{16}+\frac{11\!\cdots\!88}{38\!\cdots\!31}a^{15}+\frac{70\!\cdots\!09}{11\!\cdots\!93}a^{14}-\frac{32\!\cdots\!25}{38\!\cdots\!31}a^{13}-\frac{41\!\cdots\!58}{38\!\cdots\!31}a^{12}+\frac{13\!\cdots\!29}{11\!\cdots\!93}a^{11}+\frac{67\!\cdots\!21}{11\!\cdots\!93}a^{10}-\frac{13\!\cdots\!46}{11\!\cdots\!93}a^{9}+\frac{13\!\cdots\!75}{38\!\cdots\!31}a^{8}+\frac{47\!\cdots\!55}{38\!\cdots\!31}a^{7}+\frac{16\!\cdots\!81}{11\!\cdots\!93}a^{6}-\frac{40\!\cdots\!53}{11\!\cdots\!93}a^{5}-\frac{21\!\cdots\!65}{11\!\cdots\!93}a^{4}-\frac{12\!\cdots\!92}{11\!\cdots\!93}a^{3}-\frac{77\!\cdots\!82}{11\!\cdots\!93}a^{2}-\frac{72\!\cdots\!36}{38\!\cdots\!31}a-\frac{20\!\cdots\!42}{11\!\cdots\!93}$, $\frac{18\!\cdots\!34}{11\!\cdots\!93}a^{26}-\frac{11\!\cdots\!70}{11\!\cdots\!93}a^{25}-\frac{31\!\cdots\!64}{11\!\cdots\!93}a^{24}+\frac{64\!\cdots\!73}{38\!\cdots\!31}a^{23}+\frac{32\!\cdots\!02}{11\!\cdots\!93}a^{22}-\frac{31\!\cdots\!06}{11\!\cdots\!93}a^{21}-\frac{17\!\cdots\!53}{11\!\cdots\!93}a^{20}+\frac{22\!\cdots\!39}{11\!\cdots\!93}a^{19}+\frac{66\!\cdots\!64}{11\!\cdots\!93}a^{18}-\frac{29\!\cdots\!90}{38\!\cdots\!31}a^{17}-\frac{20\!\cdots\!98}{11\!\cdots\!93}a^{16}+\frac{25\!\cdots\!15}{11\!\cdots\!93}a^{15}+\frac{51\!\cdots\!09}{11\!\cdots\!93}a^{14}-\frac{69\!\cdots\!60}{11\!\cdots\!93}a^{13}-\frac{30\!\cdots\!00}{38\!\cdots\!31}a^{12}+\frac{99\!\cdots\!72}{11\!\cdots\!93}a^{11}+\frac{49\!\cdots\!64}{11\!\cdots\!93}a^{10}-\frac{31\!\cdots\!84}{38\!\cdots\!31}a^{9}+\frac{27\!\cdots\!24}{11\!\cdots\!93}a^{8}+\frac{10\!\cdots\!66}{11\!\cdots\!93}a^{7}+\frac{13\!\cdots\!57}{11\!\cdots\!93}a^{6}-\frac{28\!\cdots\!74}{11\!\cdots\!93}a^{5}-\frac{52\!\cdots\!56}{38\!\cdots\!31}a^{4}-\frac{93\!\cdots\!62}{11\!\cdots\!93}a^{3}-\frac{56\!\cdots\!27}{11\!\cdots\!93}a^{2}-\frac{54\!\cdots\!52}{38\!\cdots\!31}a-\frac{15\!\cdots\!69}{11\!\cdots\!93}$, $\frac{64\!\cdots\!58}{11\!\cdots\!93}a^{26}-\frac{14\!\cdots\!38}{38\!\cdots\!31}a^{25}-\frac{37\!\cdots\!78}{38\!\cdots\!31}a^{24}+\frac{74\!\cdots\!23}{11\!\cdots\!93}a^{23}+\frac{11\!\cdots\!41}{11\!\cdots\!93}a^{22}-\frac{11\!\cdots\!36}{11\!\cdots\!93}a^{21}-\frac{61\!\cdots\!10}{11\!\cdots\!93}a^{20}+\frac{81\!\cdots\!73}{11\!\cdots\!93}a^{19}+\frac{78\!\cdots\!56}{38\!\cdots\!31}a^{18}-\frac{32\!\cdots\!93}{11\!\cdots\!93}a^{17}-\frac{24\!\cdots\!09}{38\!\cdots\!31}a^{16}+\frac{31\!\cdots\!85}{38\!\cdots\!31}a^{15}+\frac{59\!\cdots\!35}{38\!\cdots\!31}a^{14}-\frac{25\!\cdots\!72}{11\!\cdots\!93}a^{13}-\frac{10\!\cdots\!37}{38\!\cdots\!31}a^{12}+\frac{36\!\cdots\!65}{11\!\cdots\!93}a^{11}+\frac{16\!\cdots\!64}{11\!\cdots\!93}a^{10}-\frac{33\!\cdots\!13}{11\!\cdots\!93}a^{9}+\frac{35\!\cdots\!13}{38\!\cdots\!31}a^{8}+\frac{12\!\cdots\!06}{38\!\cdots\!31}a^{7}+\frac{13\!\cdots\!17}{38\!\cdots\!31}a^{6}-\frac{10\!\cdots\!12}{11\!\cdots\!93}a^{5}-\frac{18\!\cdots\!08}{38\!\cdots\!31}a^{4}-\frac{32\!\cdots\!89}{11\!\cdots\!93}a^{3}-\frac{19\!\cdots\!00}{11\!\cdots\!93}a^{2}-\frac{18\!\cdots\!20}{38\!\cdots\!31}a-\frac{54\!\cdots\!65}{11\!\cdots\!93}$, $\frac{21\!\cdots\!23}{11\!\cdots\!93}a^{26}-\frac{14\!\cdots\!43}{11\!\cdots\!93}a^{25}-\frac{12\!\cdots\!73}{38\!\cdots\!31}a^{24}+\frac{83\!\cdots\!38}{38\!\cdots\!31}a^{23}+\frac{12\!\cdots\!09}{38\!\cdots\!31}a^{22}-\frac{39\!\cdots\!40}{11\!\cdots\!93}a^{21}-\frac{19\!\cdots\!48}{11\!\cdots\!93}a^{20}+\frac{27\!\cdots\!45}{11\!\cdots\!93}a^{19}+\frac{25\!\cdots\!77}{38\!\cdots\!31}a^{18}-\frac{36\!\cdots\!38}{38\!\cdots\!31}a^{17}-\frac{77\!\cdots\!22}{38\!\cdots\!31}a^{16}+\frac{30\!\cdots\!35}{11\!\cdots\!93}a^{15}+\frac{57\!\cdots\!71}{11\!\cdots\!93}a^{14}-\frac{28\!\cdots\!03}{38\!\cdots\!31}a^{13}-\frac{10\!\cdots\!25}{11\!\cdots\!93}a^{12}+\frac{11\!\cdots\!59}{11\!\cdots\!93}a^{11}+\frac{49\!\cdots\!45}{11\!\cdots\!93}a^{10}-\frac{10\!\cdots\!04}{11\!\cdots\!93}a^{9}+\frac{37\!\cdots\!92}{11\!\cdots\!93}a^{8}+\frac{11\!\cdots\!96}{11\!\cdots\!93}a^{7}+\frac{12\!\cdots\!36}{11\!\cdots\!93}a^{6}-\frac{32\!\cdots\!54}{11\!\cdots\!93}a^{5}-\frac{58\!\cdots\!32}{38\!\cdots\!31}a^{4}-\frac{10\!\cdots\!67}{11\!\cdots\!93}a^{3}-\frac{63\!\cdots\!64}{11\!\cdots\!93}a^{2}-\frac{59\!\cdots\!50}{38\!\cdots\!31}a-\frac{17\!\cdots\!65}{11\!\cdots\!93}$, $\frac{11\!\cdots\!43}{11\!\cdots\!93}a^{26}-\frac{12\!\cdots\!82}{38\!\cdots\!31}a^{25}-\frac{20\!\cdots\!65}{11\!\cdots\!93}a^{24}+\frac{22\!\cdots\!56}{38\!\cdots\!31}a^{23}+\frac{21\!\cdots\!38}{11\!\cdots\!93}a^{22}-\frac{14\!\cdots\!32}{11\!\cdots\!93}a^{21}-\frac{40\!\cdots\!29}{38\!\cdots\!31}a^{20}+\frac{39\!\cdots\!86}{38\!\cdots\!31}a^{19}+\frac{49\!\cdots\!49}{11\!\cdots\!93}a^{18}-\frac{49\!\cdots\!23}{11\!\cdots\!93}a^{17}-\frac{52\!\cdots\!44}{38\!\cdots\!31}a^{16}+\frac{14\!\cdots\!51}{11\!\cdots\!93}a^{15}+\frac{39\!\cdots\!96}{11\!\cdots\!93}a^{14}-\frac{13\!\cdots\!19}{38\!\cdots\!31}a^{13}-\frac{25\!\cdots\!04}{38\!\cdots\!31}a^{12}+\frac{59\!\cdots\!10}{11\!\cdots\!93}a^{11}+\frac{55\!\cdots\!88}{11\!\cdots\!93}a^{10}-\frac{69\!\cdots\!79}{11\!\cdots\!93}a^{9}+\frac{38\!\cdots\!67}{11\!\cdots\!93}a^{8}+\frac{27\!\cdots\!36}{38\!\cdots\!31}a^{7}+\frac{17\!\cdots\!07}{11\!\cdots\!93}a^{6}-\frac{22\!\cdots\!99}{11\!\cdots\!93}a^{5}-\frac{12\!\cdots\!24}{11\!\cdots\!93}a^{4}-\frac{71\!\cdots\!32}{11\!\cdots\!93}a^{3}-\frac{46\!\cdots\!29}{11\!\cdots\!93}a^{2}-\frac{13\!\cdots\!15}{11\!\cdots\!93}a-\frac{46\!\cdots\!63}{38\!\cdots\!31}$, $\frac{35\!\cdots\!46}{11\!\cdots\!93}a^{26}-\frac{19\!\cdots\!54}{11\!\cdots\!93}a^{25}-\frac{20\!\cdots\!00}{38\!\cdots\!31}a^{24}+\frac{34\!\cdots\!27}{11\!\cdots\!93}a^{23}+\frac{65\!\cdots\!65}{11\!\cdots\!93}a^{22}-\frac{58\!\cdots\!60}{11\!\cdots\!93}a^{21}-\frac{34\!\cdots\!88}{11\!\cdots\!93}a^{20}+\frac{14\!\cdots\!62}{38\!\cdots\!31}a^{19}+\frac{13\!\cdots\!39}{11\!\cdots\!93}a^{18}-\frac{17\!\cdots\!05}{11\!\cdots\!93}a^{17}-\frac{42\!\cdots\!79}{11\!\cdots\!93}a^{16}+\frac{48\!\cdots\!09}{11\!\cdots\!93}a^{15}+\frac{10\!\cdots\!67}{11\!\cdots\!93}a^{14}-\frac{44\!\cdots\!65}{38\!\cdots\!31}a^{13}-\frac{19\!\cdots\!26}{11\!\cdots\!93}a^{12}+\frac{63\!\cdots\!94}{38\!\cdots\!31}a^{11}+\frac{37\!\cdots\!79}{38\!\cdots\!31}a^{10}-\frac{63\!\cdots\!51}{38\!\cdots\!31}a^{9}+\frac{43\!\cdots\!30}{11\!\cdots\!93}a^{8}+\frac{71\!\cdots\!26}{38\!\cdots\!31}a^{7}+\frac{33\!\cdots\!17}{11\!\cdots\!93}a^{6}-\frac{19\!\cdots\!13}{38\!\cdots\!31}a^{5}-\frac{33\!\cdots\!03}{11\!\cdots\!93}a^{4}-\frac{19\!\cdots\!41}{11\!\cdots\!93}a^{3}-\frac{11\!\cdots\!30}{11\!\cdots\!93}a^{2}-\frac{11\!\cdots\!03}{38\!\cdots\!31}a-\frac{34\!\cdots\!71}{11\!\cdots\!93}$, $\frac{31\!\cdots\!25}{11\!\cdots\!93}a^{26}-\frac{22\!\cdots\!28}{11\!\cdots\!93}a^{25}-\frac{55\!\cdots\!92}{11\!\cdots\!93}a^{24}+\frac{39\!\cdots\!60}{11\!\cdots\!93}a^{23}+\frac{56\!\cdots\!93}{11\!\cdots\!93}a^{22}-\frac{20\!\cdots\!84}{38\!\cdots\!31}a^{21}-\frac{29\!\cdots\!04}{11\!\cdots\!93}a^{20}+\frac{13\!\cdots\!44}{38\!\cdots\!31}a^{19}+\frac{11\!\cdots\!02}{11\!\cdots\!93}a^{18}-\frac{16\!\cdots\!51}{11\!\cdots\!93}a^{17}-\frac{34\!\cdots\!92}{11\!\cdots\!93}a^{16}+\frac{46\!\cdots\!36}{11\!\cdots\!93}a^{15}+\frac{83\!\cdots\!13}{11\!\cdots\!93}a^{14}-\frac{12\!\cdots\!12}{11\!\cdots\!93}a^{13}-\frac{14\!\cdots\!08}{11\!\cdots\!93}a^{12}+\frac{60\!\cdots\!49}{38\!\cdots\!31}a^{11}+\frac{65\!\cdots\!88}{11\!\cdots\!93}a^{10}-\frac{16\!\cdots\!44}{11\!\cdots\!93}a^{9}+\frac{20\!\cdots\!66}{38\!\cdots\!31}a^{8}+\frac{55\!\cdots\!11}{38\!\cdots\!31}a^{7}+\frac{40\!\cdots\!03}{38\!\cdots\!31}a^{6}-\frac{46\!\cdots\!85}{11\!\cdots\!93}a^{5}-\frac{24\!\cdots\!59}{11\!\cdots\!93}a^{4}-\frac{15\!\cdots\!88}{11\!\cdots\!93}a^{3}-\frac{88\!\cdots\!70}{11\!\cdots\!93}a^{2}-\frac{24\!\cdots\!00}{11\!\cdots\!93}a-\frac{21\!\cdots\!75}{11\!\cdots\!93}$, $\frac{13\!\cdots\!42}{38\!\cdots\!31}a^{26}-\frac{28\!\cdots\!29}{11\!\cdots\!93}a^{25}-\frac{23\!\cdots\!94}{38\!\cdots\!31}a^{24}+\frac{49\!\cdots\!96}{11\!\cdots\!93}a^{23}+\frac{73\!\cdots\!47}{11\!\cdots\!93}a^{22}-\frac{76\!\cdots\!75}{11\!\cdots\!93}a^{21}-\frac{37\!\cdots\!90}{11\!\cdots\!93}a^{20}+\frac{52\!\cdots\!22}{11\!\cdots\!93}a^{19}+\frac{14\!\cdots\!25}{11\!\cdots\!93}a^{18}-\frac{21\!\cdots\!28}{11\!\cdots\!93}a^{17}-\frac{44\!\cdots\!70}{11\!\cdots\!93}a^{16}+\frac{19\!\cdots\!40}{38\!\cdots\!31}a^{15}+\frac{10\!\cdots\!38}{11\!\cdots\!93}a^{14}-\frac{54\!\cdots\!47}{38\!\cdots\!31}a^{13}-\frac{18\!\cdots\!75}{11\!\cdots\!93}a^{12}+\frac{23\!\cdots\!45}{11\!\cdots\!93}a^{11}+\frac{29\!\cdots\!71}{38\!\cdots\!31}a^{10}-\frac{21\!\cdots\!25}{11\!\cdots\!93}a^{9}+\frac{76\!\cdots\!10}{11\!\cdots\!93}a^{8}+\frac{21\!\cdots\!92}{11\!\cdots\!93}a^{7}+\frac{66\!\cdots\!17}{38\!\cdots\!31}a^{6}-\frac{61\!\cdots\!32}{11\!\cdots\!93}a^{5}-\frac{32\!\cdots\!83}{11\!\cdots\!93}a^{4}-\frac{66\!\cdots\!07}{38\!\cdots\!31}a^{3}-\frac{39\!\cdots\!24}{38\!\cdots\!31}a^{2}-\frac{32\!\cdots\!35}{11\!\cdots\!93}a-\frac{10\!\cdots\!71}{38\!\cdots\!31}$, $\frac{18\!\cdots\!23}{11\!\cdots\!93}a^{26}-\frac{11\!\cdots\!78}{11\!\cdots\!93}a^{25}-\frac{11\!\cdots\!67}{38\!\cdots\!31}a^{24}+\frac{67\!\cdots\!13}{38\!\cdots\!31}a^{23}+\frac{34\!\cdots\!28}{11\!\cdots\!93}a^{22}-\frac{10\!\cdots\!95}{38\!\cdots\!31}a^{21}-\frac{17\!\cdots\!82}{11\!\cdots\!93}a^{20}+\frac{23\!\cdots\!10}{11\!\cdots\!93}a^{19}+\frac{69\!\cdots\!35}{11\!\cdots\!93}a^{18}-\frac{92\!\cdots\!50}{11\!\cdots\!93}a^{17}-\frac{71\!\cdots\!33}{38\!\cdots\!31}a^{16}+\frac{26\!\cdots\!02}{11\!\cdots\!93}a^{15}+\frac{17\!\cdots\!83}{38\!\cdots\!31}a^{14}-\frac{72\!\cdots\!50}{11\!\cdots\!93}a^{13}-\frac{94\!\cdots\!74}{11\!\cdots\!93}a^{12}+\frac{10\!\cdots\!38}{11\!\cdots\!93}a^{11}+\frac{52\!\cdots\!09}{11\!\cdots\!93}a^{10}-\frac{10\!\cdots\!55}{11\!\cdots\!93}a^{9}+\frac{94\!\cdots\!83}{38\!\cdots\!31}a^{8}+\frac{10\!\cdots\!35}{11\!\cdots\!93}a^{7}+\frac{13\!\cdots\!28}{11\!\cdots\!93}a^{6}-\frac{10\!\cdots\!08}{38\!\cdots\!31}a^{5}-\frac{16\!\cdots\!36}{11\!\cdots\!93}a^{4}-\frac{96\!\cdots\!25}{11\!\cdots\!93}a^{3}-\frac{19\!\cdots\!70}{38\!\cdots\!31}a^{2}-\frac{55\!\cdots\!61}{38\!\cdots\!31}a-\frac{15\!\cdots\!30}{11\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6360080771.530314 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{9}\cdot 6360080771.530314 \cdot 1}{2\cdot\sqrt{17717054310925604811052271173453197606912}}\cr\approx \mathstrut & 0.186691976425618 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 18*x^25 + 189*x^23 - 63*x^22 - 1062*x^21 + 648*x^20 + 4464*x^19 - 2679*x^18 - 14499*x^17 + 7092*x^16 + 36963*x^15 - 21411*x^14 - 74187*x^13 + 24255*x^12 + 61398*x^11 - 36351*x^10 - 17520*x^9 + 66663*x^8 + 42507*x^7 - 11583*x^6 - 18603*x^5 - 10539*x^4 - 6327*x^3 - 2835*x^2 - 639*x - 53)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 18*x^25 + 189*x^23 - 63*x^22 - 1062*x^21 + 648*x^20 + 4464*x^19 - 2679*x^18 - 14499*x^17 + 7092*x^16 + 36963*x^15 - 21411*x^14 - 74187*x^13 + 24255*x^12 + 61398*x^11 - 36351*x^10 - 17520*x^9 + 66663*x^8 + 42507*x^7 - 11583*x^6 - 18603*x^5 - 10539*x^4 - 6327*x^3 - 2835*x^2 - 639*x - 53, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 18*x^25 + 189*x^23 - 63*x^22 - 1062*x^21 + 648*x^20 + 4464*x^19 - 2679*x^18 - 14499*x^17 + 7092*x^16 + 36963*x^15 - 21411*x^14 - 74187*x^13 + 24255*x^12 + 61398*x^11 - 36351*x^10 - 17520*x^9 + 66663*x^8 + 42507*x^7 - 11583*x^6 - 18603*x^5 - 10539*x^4 - 6327*x^3 - 2835*x^2 - 639*x - 53);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 18*x^25 + 189*x^23 - 63*x^22 - 1062*x^21 + 648*x^20 + 4464*x^19 - 2679*x^18 - 14499*x^17 + 7092*x^16 + 36963*x^15 - 21411*x^14 - 74187*x^13 + 24255*x^12 + 61398*x^11 - 36351*x^10 - 17520*x^9 + 66663*x^8 + 42507*x^7 - 11583*x^6 - 18603*x^5 - 10539*x^4 - 6327*x^3 - 2835*x^2 - 639*x - 53);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_9$ (as 27T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 27 conjugacy class representatives for $S_3\times C_9$
Character table for $S_3\times C_9$ is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 3.1.972.1, \(\Q(\zeta_{27})^+\), 9.3.74384733888.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Minimal sibling: 18.0.12100864846032214829641728.3

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $18{,}\,{\href{/padicField/5.9.0.1}{9} }$ ${\href{/padicField/7.9.0.1}{9} }^{3}$ $18{,}\,{\href{/padicField/11.9.0.1}{9} }$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{9}$ $18{,}\,{\href{/padicField/23.9.0.1}{9} }$ $18{,}\,{\href{/padicField/29.9.0.1}{9} }$ ${\href{/padicField/31.9.0.1}{9} }^{3}$ ${\href{/padicField/37.3.0.1}{3} }^{9}$ $18{,}\,{\href{/padicField/41.9.0.1}{9} }$ ${\href{/padicField/43.9.0.1}{9} }^{3}$ $18{,}\,{\href{/padicField/47.9.0.1}{9} }$ ${\href{/padicField/53.2.0.1}{2} }^{9}{,}\,{\href{/padicField/53.1.0.1}{1} }^{9}$ $18{,}\,{\href{/padicField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $27$$3$$9$$18$
\(3\) Copy content Toggle raw display Deg $27$$27$$1$$73$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
1.9.6t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})\) $C_6$ (as 6T1) $0$ $-1$
* 1.9.3t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.9.6t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})\) $C_6$ (as 6T1) $0$ $-1$
* 1.9.3t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
* 1.27.9t1.a.a$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.27.9t1.a.b$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.27.9t1.a.c$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
1.27.18t1.a.a$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
1.27.18t1.a.b$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
1.27.18t1.a.c$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
* 1.27.9t1.a.d$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.27.9t1.a.e$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
1.27.18t1.a.d$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
* 1.27.9t1.a.f$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
1.27.18t1.a.e$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
1.27.18t1.a.f$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
* 2.972.3t2.c.a$2$ $ 2^{2} \cdot 3^{5}$ 3.1.972.1 $S_3$ (as 3T2) $1$ $0$
* 2.972.6t5.c.a$2$ $ 2^{2} \cdot 3^{5}$ 6.0.2834352.3 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.972.6t5.c.b$2$ $ 2^{2} \cdot 3^{5}$ 6.0.2834352.3 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.2916.18t16.c.a$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.1 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.c.b$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.1 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.c.c$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.1 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.c.d$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.1 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.c.e$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.1 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.c.f$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.1 $S_3\times C_9$ (as 27T12) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.